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ABSTRACT—Tetrameric hemoglobins (Hbs) A and D were isolated from red blood cells of the Aldabra giant
tortoises, Geochelone gigantea, by a hydrophobic interaction chromatography. After reduction and
S-pyridylethylation, two sets of two types of a-chains (o-1 and a-2) and one 3-chain were purified from the
major Hb A and minor Hb D in molar ratios of about 1:1:2, respectively, by a reversed-phase column chroma-
tography. The complete amino acid sequences of the three globin-chains from Hb A were determined: 141
amino acid residues for the two o-chains and 146 amino acid residues for the B-chain. Using computer
analysis (amino acid maximum homology), the two a-chains shared a 96.5% sequence identity and had low
sequence identities (37.8% for a-1 and 35.8% for «-2) with the -chain of the same species, G. gigantea.
We constructed a phylogenetic tree of 28 primary globin structures from Repitilia (7 species of squamates,
4 species of turtles, 3 species of crocodiles and 1 species of sphenodontids), including the three globins of G.
gigantea Hb A. The following results were obtained: (1) The two terrestrial species of Geochelone (G. gigantea
and G. carbonaria) were closely related: 139 amino acid residues (95.2%) of the two B-globin chains were
conserved; (2) Based on the divergence patterns of globin-chains, the sea turtle Caretta caretta was shown
to be unusual relatedness form the groups of terrestrial and freshwater species in turtles. The molecular
relationships appearing on the phylogenetic tree also support the traditional classification of reptiles and
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partly confirm previous molecular studies of reptilian hemoglobin evolution.

INTRODUCTION

Hemoglobin, the major respiratory protein, has been
extensively investigated in animals, plants, protozoans, fungi
and bacteria (Keilin, 1956; Kleinschmidt and Sgouros, 1987).
At the molecular level the protein has provided much informa-
tion in both functional and evolutionary aspects (Bunn and
Forget, 1986; Goodman et al., 1988; Vinogradov et al., 1993).
In reptiles, to our knowledge, 35 globin-chains from 19 spe-
cies have been sequenced (Gorr et al., 1998; Kleinschmidt
and Sgouros, 1987; Fushitani et al., 1996). Among these stud-
ies, there are four investigations on turtle hemoglobin: one
for a land tortoise, Geochelone carbonaria (Bordin et al., 1997),
one for a sea turtle, Caretta caretta (Petruzzelli et al., 1996),
and two for freshwater turtles, Chrysemys picta bellii
(Rucknagel et al., 1984) and Phrynops hilarii (Ricknagel et
al., 1984).

This study aimed to establish the complete primary struc-
tures of both types of globins (o and ) from the land tortoises

* Corresponding author: Tel. +81-3-3972-8111;
FAX. +81-3-3972-0027.
E-mail: fshishi@med.nihon-u.ac.jp.

Geochelone gigantea, and analyze phylogenetic relationships
among reptiles including two species of Geochelone, G.
gigantea and G. carbonaria. First, the two hemoglobin com-
ponents (Hb A and Hb D) were separated from G. gigantea
hemoglobin under native conditions and purified constitutive
polypeptide globin-chains from each of the two hemoglobin
components for use in analyzing their primary structures. This
study provides complete primary structures of the three globins
from Hb A of G. gigantea. Here, we also describe a phyloge-
netic tree constructed for 14 complete amino acid sequences
of both a-type globins and B-type globins of reptilian hemo-
globins, including the two a-globins and one B-globin of G.
gigantea Hb A. The phylogenetic tree supports previous stud-
ies on the classification, phylogeny and molecular evolution
of reptiles (Benton, 1990, Fushitani et al., 1996: Gorr et al.,
1998).

MATERIALS AND METHODS

Materials

Blood from a male Aldabra giant tortoise, G. gigantea, weighing
approximately 36 kg, was collected in heparin-Tris-HCI buffer, pH 8.0,
at Osaka Municipal Tennoji Zoo where the animal died just before
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bleeding. The animal came from the Aldabra Atoll located only about
350 km from the northern coast of Madagascar and about 600 km
away from East Africa’s coast. Acetonitrile, ammonium sulfate,
ammonium bicarbonate, tri-n-butyl phosphine, 4-vinyl pyridine and
V8 protease (from Staphylococcus aureus strain V8) were purchased
from Nakalai Tesque, Inc. (Kyoto, Japan). Trifluoroacetic acid (TFA)
was obtained from Sigma Chemical Co. (St. Louis, MO. USA). Lysyl
endopeptidase (Achromobactor protease ) was purchased from Wako
Pure Chemicals Co. (Tokyo, Japan). Separation columns, Alkyl
Superose column HR5/5 and Resource column (3 ml prepackaged
with source 15 RPC gel matrix), were purchased from Pharmacia
Biotech (Upsala, Sweden), and placed in a fast protein liquid chroma-
tography (FPLC) system (Pharmacia Biotech). All other chemicals
and solvents used were of the most purified grade commercially avail-
able.

Preparation of hemoglobin solution

Red blood cells were washed three times in 10 vol. physiological
saline, lysed with 1 mM Tris-HCI, pH 8.0, and centrifuged at 3000 x g
for 15 minutes to remove cell debris. All procedures were done at
4°C. The cell lysate, hemoglobin solution, was aliquoted and stored
at —80°C until use.

Separation of hemoglobin components

The hemoglobin solution which had been saturated at 40% by
adding 60% saturated ammonium sulfate was subjected to an Alkyl
Superose column equilibrated with 60% saturated ammonium sulfate
(183 g/ 500 ml) in 50 mM ammonium bicarbonate, pH 8.0. Elution
was carried out with a gradient of 60—0% saturated ammonium sul-
fate in the 50 mM ammonium bicarbonate buffer. The flow rate was
maintained at 0.5 ml/min and fractions of protein peaks were col-
lected. The fractions were monitored at 415 and 280 nm by spectro-
photometers (Model 115, Gilson and UV-1, Pharmacia Biotech).

Protein modification

Reduction and S-pyridylethylation of globins were performed by
the method described previously (Friedman et al., 1970). After each
reaction, the modified protein was dialyzed against 0.1M ammonium
bicarbonate and lyophilized. Finally, the remaining reagents were
completely removed from the sample by reversed-phase column chro-
matography on Resource from water containing 0.1% TFA to 80%
acetonitrile containing 0.08% TFA. Flow rates were maintained at 0.5
ml/min. The fractions were monitored at 214 and 280 nm by a spec-
trophotometer (Model 116, Gilson).

Separation and purification of globin-chains

To separate o-type and B-type globin-chains, the S-pyridylethy-
lated hemoglobin was subjected to a Resource column and eluted
with a 0.1% TFA buffered gradient to 60% acetonitrile in 0.08% TFA.
All fractions were monitored at 214 and 280 nm by a spectrophotom-
eter (Model 116, Gilson). For further purification, re-chromatography
on the Resource column was conducted under shallower gradient
conditions as described in our previous report (Shishikura et al., 1987).

Enzymatic digestion

Lysyl endopeptidase digestion was performed essentially as
described (Jekel et al., 1983). Briefly, samples (15—20 nmoles) of the
S-pyridylethylated protein were first dissolved in 8 M urea and
incubated at 37°C for 30 min, followed by the addition of 0.5 M
ammonium bicarbonate at a final concentration of 4 M urea in 0.1 M
ammonium bicarbonate. Lysyl endopeptidase digestion of the sample
was performed at an enzyme/substrate ratio of 1:30 (mol/mol) for 4 hr
at 37°C in 0.1 M ammonium bicarbonate solution, pH 8.2 containing
4 M urea. To obtain overlapping peptides, the sample (20 nmoles)
was digested with the V8 protease at a ratio of 1:100 (w/w, enzyme/
substrate) for 48 hr at 37°C in a 0.1M Tris-HCI solution, pH 8.5 con-
taining 1 M urea.

Peptide separation

All peptides derived from their parent molecules were separated
using a reversed-phase column, Resource, in a 0.1% TFA buffered
gradient to 60% acetonitrile in 0.08% TFA. Flow rates were main-
tained at 0.5 ml/min. All fractions were monitored at 214 nm and 280
nm by a spectrophotometer (Model 116, Gilson). Re-chromatogra-
phy of selected peptides, when necessary, was performed as previ-
ously described (Shishikura et al., 1987).

Sequence determination

Sequence analysis was performed using a Shimadzu gas phase
protein sequencer, PPSQ-10, equipped with a PTH-10 amino acid
analyzer (Shimadzu Co., Kyoto, Japan). Phenylthiohydantoin (PTH)-
derivatives from the sequencer were separated and quantified. PTH-
cysteine was detected as pyridylethylated-PTH-cysteine, the elution
point of which was determined as described in the manufacturer’s
manual.

Computer analysis

A multiple alignment program, Clustal W (Thompson et al., 1994),
was used in the alignment of 28 primary structures of globins from
Reptilia. Pair-wise distances among the 28 globin sequences were
analyzed using a computer program PROTDIST stored in the PHYLIP
package (v. 3.51c; Felsenstein, 1993) under the Kimura-formula op-
tion. Based on the pair-wise distances, Neighbor-Joining/lUPGMA in
NEIGHBOR (Felsenstein, 1993) was used to construct the phyloge-
netic tree of hemoglobins from Reptilia.

RESULTS AND DISCUSSION

Two components of hemoglobins

The red blood cells of the Aldabra giant tortoises, G.
gigantea, contain two main hemoglobin components, major
and minor, which were successfully separated under native
conditions (50 mM ammonium bicarbonate, pH 8.0) by use of
an Alkyl Superose column HR 5/5 (Fig. 1). Two peaks were
detected at 280 nm and 415 nm. They exist at a ratio of about
5:1 based on chromatogram area calculation. This value may
vary from 5:1 to 5:3 depending on sample preparation.
Braunitzer and coworkers have succeeded in separating two
main components, Hb A and Hb D, from the adult Western
Painted Turtle (Chrysemys picta bellii) by use of polyacryla-
mide gel electrophoresis under alkaline (pH 8.3) and dissoci-
ating conditions (Riicknagel and Braunitzer, 1988). Also other
investigators successfully separated two components from
sphenodontid hemoglobin on DEAE at pH 8.5, but in this case
they added 0.1% mercaptoethanol and 0.1% dithiothreitol to
the elution buffer (Abbasi et al, 1988) and lysis buffer of red
blood cells (Weber et al., 1989), respectively. Brittain (1988)
determined the existence of three carbomonoxy-form hemo-
globin components, T1, T2 and T3, from Sphenodon punctatus
by using DEAE-Sephadex eluted by a gradient of Tris-HCI
buffer (pH 8.5) versus Bistris-HCI buffer (pH 5.5). Bonilla et a/
(1994) used preparative isoelectric focusing and agarose gels
with ampholines for separation of intact hemoglobin compo-
nents. They purified two hemoglobins from the South Ameri-
can snake Riotropical Racer, Mastigodryas bifossatus,
however, whose protein bands were closely separated with
isoelectric points of 8.02 and 8.07, respectively. Hence, the
Alkyl Superose column, a kind of hydrophobic interaction col-
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Fig. 1. Alkyl Superose HR5/5 column chromatography of the Aldabra
giant tortoises, G. gigantea, intact hemoglobin. The hemoglobin solu-
tion was saturated at 40% by adding 60% saturated ammonium sul-
fate and applied to an Alkyl Superose HR5/5 column equilibrated with
60% saturated ammonium sulfate buffer (buffer A). After washing with
buffer A, the adsorbed proteins were eluted with linearly decreasing
ammonium sulfate concentration from 60% to 0% in 50 mM ammo-
nium bicarbonate, pH 8.0. Elution was monitored at 280 nm (top) and
415 nm (bottom). Flow rate was maintained at 0.5 ml/min. Bars indi-
cate the pooled fractions of major and minor peak, Hb A and Hb D,
respectively.

umn, should provide excellent resolution in separation and
purification of intact hemoglobin components of G. gigantea.
Successful separation of intact hemoglobin components
enables the manufacture of crystals from individual hemoglo-
bin components for future study of the relationships between
physiological functions and crystal structures of hemoglobin
components.

Chain separation
After separation of individual components of Geochelone
hemoglobin, the constituents of the major and minor hemo-

0.02 AU/A, 280 nm

L 1 1 I

30 50 80 120 min

0.2 AU/A, 214 nm

]

30 50 80 120 min

Fig. 2. Separation of globin-chains from reduced and S-
pyridylethylated Hb A on Resource column. A linear gradient was
used between 0.1% TFA in water and 0.08% TFA in 60% acetonitrile
at a flow rate of 0.5 ml/min. Elution was monitored at 280 (top) and
214 nm (bottom). Globins from peaks 1, 2, 3 are -1, -2 and 3 glo-
bin-chains, respectively. Bars indicate fractions used for sequencing.
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globins could have been further separated under intact condi-
tions by a reversed-phase column using prepackaged
Resource resins but their resolution proved to be inadequate.
However, after reduction and S-pyridylethylation of the
hemoglobin, the major hemoglobin yielded three more widely
separated main peaks and several additional minor peaks on
a chromatogram obtained by the same reversed-phase col-
umn described above. Many investigators have used reversed-
phase semi-microbore type columns (Abbasi et al., 1988;
Matsuura et al., 1989; Fushitani et al., 1996; Petruzzelli et al.,
1996) or CM-columns (Liu, 1975; Leclercq et al., 1982;
Rucknagel and Braunitzer, 1988; Rucknagel et al., 1988; Is-
lam et al., 1990: Naqvi et al., 1994) for separation of globin-
chains. Our method described here has a similar efficiency
and gives excellent resolution in separation at high flow rates
with low backpressure (versus flow rates). Figure 2 shows a
typical separation profile of three main peaks of globin-chains
from the major hemoglobin. The advantages to modify the
protein by reduction and S-pyridylethylation were also true for
separation of globin-chains from the minor hemoglobin (data
not shown). As the results, we prepared six individual globin-
chains in total from the two hemoglobin components of G.
gigantea.

Table 1 shows the results of the first 20 amino-terminal
amino acid sequences of the six globin-chains. The nomen-
clature of a- and B-globin chains depends on amino acid
sequence similarities to those of the known sequences of rep-
tilian hemoglobins (Kleinschmidt and Sgouros, 1987). Con-
sequently, the major hemoglobin is a kind of Hb A and the
minor is Hb D. Two a-types of globins in Hb A or Hb D have
identical sequences each other so far sequenced (Table 1),
while their patterns on reversed-phase column chromatogra-
phy are shown distinctly different (Fig. 2, data not shown for
those of Hb D). Figure 2 also shows that two kinds of a-types
of globin-chains (o-1 and o-2) and one B-type globin-chain
are separated at molar ratio of about 1:1:2. This indicates that
the Hb A is tetrameric hemoglobin comprised a-1/0-2/f3,. The
presence of two subtypes of a-globins is completely confirmed
by their primary structures shown in Fig. 3.

In birds (Dolan et al., 1997) and crocodiles (Kleinschmidt
and Sgouros, 1987) only one type of 3-globin chain has been
demonstrated, while lizards and snakes express two types of
B-globin chains (Fushitani et al., 1996; Gorr et al., 1998). It is
still unknown yet whether the B-globin chains of Hb A and Hb
D from G. gigantea are identical or not, but peptide maps

Table 1. Amino-terminal amino acid residues of six globin chains
from the Aldabla giant tortoises, Geochelone gigantea

1 10 20

HbA o-l VLTAGDKANVKTVWSKYVGSH
2 VLTAGDKANVKTVWSKVGSH

B VHWTSEEKQYITALQWAKVN

1 10 20
HbDo-l1MLTEDDKQLIQHVWEKVLEH
2MLTEDDKQLIQHVWEKVLEH

B VHWTSEEKQYITALQWAKVN

digested with lysyl endopeptidase (data not shown) and the
first 20 amino-terminal amino acid residues (Table 1) suggest
that they might be the same. It was also indicated that the
blood of adult Western Painted Turtles, Chrysemys picta bellii
(Ricknagel and Braunitzer, 1988) were sharing the same {3-
globin chains when compared with the two complete amino
acid sequences of p-types of globin-chains from Chrysemys
Hb A and Hb D. On the contrary, in frogs there have been
reported to present two subtypes of 3-globin chains (Knéchel
et al., 1983; Patient et al., 1983; Oberthir et al, 1983 and
1986). On the numbers of subtypes of B-type globin-chains
among amphibians, reptiles, birds and mammals, thus, rein-
vestigations are needed, in particular, in view of evolution of
Tetrapoda.

Sequencing and alignments

In general, Amniota (reptiles, birds, and mammals) has
two or more hemoglobin components (lkehara et al., 1997;
Gorr et al, 1998) which are expressed under different physi-
ological conditions. The presence of a-type (o.°) globin-chain
in Hb D is, in particular, of interest in the study of the molecu-
lar phylogeny of Amniota because o°-globin chain was first
studied in birds such as chickens (Hagopian and Ingram, 1971;
Brown and Ingram, 1974; Kleinshmidt and Sgouros, 1987).
The nomenclature of Hb A and Hb D was adopted in Ingram’s
laboratory (Hagopian and Ingram, 1971; Brown and Ingram,
1974) to describe the various domestic fowl hemoglobins: The
embryonic and adult definitive erythrocytes contain the major
adult (A) hemoglobin and the minor definitive (D) hemoglo-
bin.

Hb D was also reported in the tuatara Sphenodon (Abbasi
etal., 1988). As for the presence of Hb D in turtles, it was first
found in the adult Western Painted Turtle, Chrysemys picta
bellii (Ricknagel et al., 1984) and the Hilaire’s Sideneck Turtle,
Phrynops hilarii (Ricknagel et al., 1984). This study describes
the presence of Hb D in the Aldabra giant tortoises, G.
gigantea, and also demonstrates the presence of two sub-
types of o-type globin-chains. To ascertain the presence of
o globin-chains in the Hb D of G. gigantea, a study on the
primary structures of the o globin-chains is in progress (the
primary structure of o® —1 globin chain has been submitted to
the JIPID with an accession number PC7116). To date,
all reptiles sequenced (Abbasi et al., 1988; Matsuura et al.,
1989; Islam et al., 1990; Rucknagel et al., 1988; Abbasi and
Braunitzer, 1991; Fushitani et al., 1996) except crocodiles
(Leclercq et al., 1981) have been clarified to possess two
hemoglobin components, Hb A and Hb D.

Reptilian phylogenetic tree

Geochelone is a unique group among turtles since it
includes two big-size tortoises; G. gigantea, the Aldabra giant
tortoises, and G. elephantopus, the Galapagos giant tortoises.
These species may weigh up to 250 kg and measure 150 cm
over the curve of their carapaces (Jackson, 1984). The
Galapagos tortoises are, in general, known as the world’s larg-
est living tortoises. Recently, Bordin et al (1997) have studied
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Fig. 3. Strategies and complete sequences of a-1 (top), o-2 (middle) and f (bottom) globin-chains of Hb A from the Aldabra giant tortoises, G.
gigantea. The complete amino acid sequences of the o-1 (top), a-2 (middle) and B (bottom) globin-chains of G. gigantea Hb A are established
from overlapping peptides and fragments. The residues marked with continuous lines are those identified by Edman degradation method.
Vertical lines represent the beginning and the end of sequencing. Dashed lines indicate the residues not determined but which might be included
in the fragment. Small open circles indicate residues incompletely identified using the fragment. Peptide nomenclatures are as follows: lysyl
endopeptidase, K; V8 protease, E.
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one of the Geochelone species, G. carbonaria, whose cara-
pace size measures at most about 40 cm, and reported the
primary structure of the -globin deduced from its cDNA
analysis. The distribution range of G. carbonaria stretches
throughout mainland South America: Panama, Colombia, Ven-
ezuela, Brazil, Paraguay, and Argentina. Thus, the present
habitats of the three Geochelone species are remote and iso-
lated from one another. Many questions arises, such as “When
did they diversify from their ancestor?”, “Is there any correla-
tion between diversity of morphological characteristics and
evolution of protein structure?”, “How do they differ in their
primary structures?”, and “How have they adapted protein
functions to environmental and physical circumstances? “ On
these points, comparing the primary structures gives fairly
important clues for understanding and elucidating the evolu-
tion and improvements of molecular structures of proteins as
well as genes.
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Figure 3 summarizes the strategies used to establish the
complete amino acid sequences of the three globin-chains
from Hb A. Appendix 1 provides the data supporting the
sequences of Fig. 3. The two a-globin chains are composed
of 141 amino acid residues and the B-chain is composed of
146 residues. All overlaps were quantitatively confirmed by
duplicated analyses of amino acid residues, with the excep-
tions of residues 22 through 30 and 109 through 120 for a-1
globin-chain, 23 through 30, 61, 63 through 68, and 95 through
120 for -2 globin chain, and 72, 73 and 122 for 3-globin chain.

The two a-globin chains and the B-globin chain of G.
gigantea are aligned with those previously reported for reptil-
ian hemoglobins (Appendix 2). When the globin sequences
of the two a-chains and the B-chain of G. gigantea are com-
pared with those of known sequences, there are 19 invariant
amino acids among the 28 globins from reptilian hemoglo-
bins. As for the invariant amino acid residues among the 14
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Fig. 4. The phylogenetic tree of 28 reptilian globins. Distance matrices estimated by PRTODIST (option: Kimura formula/data not shown) was
used for construction of a rooted tree by NEIGHBOR under the UPGMA method in the package of PHYLIP (version 3.51c: Felsenstain, 1993).
Branch lengths are proportional to protein distances and shown on the individual branches of the tree. The abscissa is a time scale in Myr (million
years) ago based on the separations of the o- and 3- globin chains described by Goodman et al., 1975. The references of globin-chains used in
the present analysis are as follows: 1) this study, 2) this study, 3) Riicknagel et al., 1988, 4) Petruzzelli et al., 1996, 5) Abbasi et al., 1988, 6)
Rucknagel et al., 1988, 7) Abbasi et al., 1988, 8) Fushitani et al., 1996, 9) Islam et al., 1990, 10) Naqvi et al., 1994, 11) Duguet et al., 1974, 12)
Leclercq et al., 1981, 13) Leclercq et al., 1981, 14) Leclercq et al., 1982, 15) this study, 16) Bordin et al., 1997, 17) Rucknagel et al., 198, 18)
Petruzzelli et al., 1996, 19) Abbasi et al., 1988, 20) Brittain, 1988, 21) Riicknagel et al., 1988, 22) Abbasi et al., 1991, 23) Islam et al., 1990, 24)
Naqvi et al., 1994, 25) Matsuura et al., 1989, 26) Leclercq et al., 1981, 27) Leclercq et al., 1981, 28) Leclercq et al., 1982.
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o-globins and 14 B-globins from reptiles, there are 44 invari-
ant (31.2%) and 41 invariant (28.1%), respectively. When
compared sequence similarities of globin chains within a spe-
cies (G. gigantea), the sequence identities of 37.8% (a-1 ver-
sus B) and 35.8% (a-2 versus B) were obtained. These
resemble the value (42.5% identity) obtained from the com-
parison with human o- and B-globin chains (Bunn and Forget,
1986). On the contrary, comparing the sequence of the {3-
globin chain of G. gigantea with that of G. carbonaria, there
are 139 identical amino acid residues. This similarity (95.2%)
coincides with the sequence similarity (96.5%) of the two o-
globin chains of G. gigantea. This finding suggests that the
two species are definitely very closed related to each other,
and their protein structures, though they are limited, have
somehow been conserved even when their morphological
characteristics have greatly changed.

Reptilian phylogeny and diversity based on o~ and {3-
globin chains

Phylogenetic analyses of 28 globin-chains including 4
species of Testudinata, 7 species of Squamata (snakes
and lizards), 3 species of Crocodylia and 1 species of
Rhynchocephalia were conducted by PROTDIST (Felsenstein,
1998). The rooted tree (Fig. 4) deduced by NEIGHBOR under
the UPGMA method (PHYLIPS; Felsenstein, 1993) is highly
correlated at the level of orders with the reptilian traditional
phylogeny established mainly depending on morphological
characteristics (Carroll, 1969; Benton, 1990). This partly sup-
ports the previous molecular studies on the evolution of reptil-
ian hemoglobins (Goodman et al., 1975; Fushitani et al., 1996;
Gorr et al., 1998; Vinogradov et al., 1993). The molecular
relationships appearing on our phylogenetic tree are summa-
rized as follows: (1) the two species of Geochelone have sepa-
rated very recently (estimated to be about 17 million years
ago): divergence dates are estimated 2.6—4.4 times later than
those of the two species of Varanas and the two species of
crocodiles (Crocodylus niloticus and Alligator mississippiensis);
(2) the species Sphenodon is closely related to the group of
tortoises; (3) the primary structures of -globin chains from
the sea turtle Caretta and the sea snake Liophis miliaris
hemoglobins were, in particular, shown to be unusual relat-
edness from the group of terrestrial species in turtles and
squamates, respectively; (4) in the branches of a-globin chains
the squamates (snakes and lizards) diverged from the groups
of turtles and crocodiles, but in the branches of 3-globin chains
the crocodiles first separated from the other groups of reptiles
(turtles and squamates).

One of the most interesting objectives is, therefore,
determining when and how the Galapagos giant tortoises, G.
elephantopus, diversified from their sister species, the Aldabra
giant tortoises G. gigantea. At the present time, the habitats
of the two giant tortoises are remote oceanic islands and sepa-
rated by two continents, Africa and South America, and the
Atlantic Ocean. According to our 3-globin data, the divergence
time of G. gigantea and G. carbonaria was estimated as 17
myr (million years) ago. This coincides with the recent study

of Caccone et al (1999) who have estimated that the coloni-
zation of Madagascar by tortoises occurred in 22—14 myr ago
based on tortoises mtDNA sequences. It is not unreasonable
to make a scenario that the two living giant species had diver-
sified less than 17 myr ago from their common ancestor and
reached oceanic islands, one is volacinc (the Galapagos) and
the other is atoll (Aldabra), by rafting, the most reliable way of
migration for terrestrial animals. Future studies on globin struc-
tures of G. elephantopus may well explain the divergence times
and molecular relationships of hemoglobins among the three
Geochelone species.
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Appendix 1. Sequence analyses of peptides obtained by cleavage with lysyl endopeptidase and V8 protease.
Hb A a-1 Hb A a-2 Hb A B
Step] Amino Acid (p moles) Amino Acid (p moles) Amino Acid (p moles)
Intact globin E-1 K-1 E-1 Intact globin K-1

1|V (1650) V (3281) |V (2099) V (243) |V (576) V (2689)

2|L (1610) L (2685) |L (2733) L (272) |H (206) H (991)

3|T (666) T (1189) |T (1174) T (145) |W (264) W (1952)

41A (1520) A (2077)|A (2233) A (252) |IT(A7D) T (814)

51G (1008) G (1504)|G (1715) G (160) |S (60) S (241)

6|D (1006) D (2096) D (116) (E (289) E (1323)

71K (1690) K (2744) K (142) |E (349) E (1460) |[E-1

8|A (1185) A (1690) A (191) |K(231) |K-2 K (812) |K (1622)

9IN (1092) N (1598) N (169) [Q (213) [Q (1643) Q (1375)
10|V (1048) V (1414) VvV (149) |Y (171) |Y (1231) Y (1079)
11{K (1438) K (1720) |K-2 K (189) |1(196) |[1(1782) 1(1261)
12(T (464) T (645) |T (1715) T (100) |T(85) |T(770) T (1537)
13[V (1006) V (1092) |V (2333) V (137) |IS(31) S (242) S (218)
14|W (556) W (693) [N.D. W (60) |[L (160) |L (1377) L (1050)
15|S (147) S (179) (S (303) S (24) W (50) |W (849) W (516)
16(K (777) K (961) [K(1431) K-3 K (140) [A(179) |A (1208) A (945)
17V (665) V (652) V (2182) |V (114) [K(49) |K(1019)|K-3 K (780)
18(G (395) G (437) G (1589) |G (77) |V (142) V (1625) |V (660)
19]S (86) S (98) S (343) |S(18) N (123) N (1397) |N (625)
20[{H (183) H(214) H (786) |H (60) |V (148) V (1738) |V (549)
21|L (484) L (397) L (1634) |L (62) G (93) G (1015) |G (332)
22|E (384) E (1685) E (103) E (1387) |E (258)
23|E (172) D (1179) V (126) V (1146)
24|Y (266) Y (1041) G (83) G (872)
25(G (211) G (842) G (104) G (882)
26(S (48) S (200) E (82) E (991) |E-2
27|E (217) E (1029) A (131) A (1032) |A (1119)
28|T (111) T (412) L (101) L (1020) |L (922)
29|L (304) L (755) A (130) A (979) |A (1476)
30|E (183) E-2 E (763) |E-2 R (60) R (944) R (565)
31|R (152) R (768) R (723) |ND. L (97) L (852) |L (780)
32|L (261) L (2331) L (567) |L(232) |L(114) L (900) |L (882)
33|F (157) F (2060) F (489) |F (208) [I(61) 1(747) |1(569)
34|V (239) V (2060) V (475) |V (232) |V (76) V (706) |V (600)
35|V (264) V (2004) V (496) |V (206) |Y (38) Y (558) |Y (453)
36(Y (97) Y (1510) Y (334) |Y (153) |P(45) P (505) |P(473)
37(P (138) P (1670) P(349) P(174) (W11 W (326) |W (171)
38|S (27) S (286) S (56) S(37) T (13) T (249) |T (256)
39|T (57) T (653) T (126) [T (94) Q45 Q@373) 1Q(383)
40|K (89) |K-1 K (1543) |K-4 K (231) |K(194) |[R(29) R(437) |[R(375)
41 T (763) |T (515) |T (1520) T(O8) |F(51) F (405) |F (395)
42 Y (1690) |Y (740) |Y (2342) Y (87) |F(70) F (466) |F (398)
43 F (2475) |F (965) |F (2797) F (103) [A (76) A (343) |A (444)
44 P (1501) |P (679) [P (1796) P (99) S (53) S (48)
45 H (460) |H (375) |H (850) H (58) F (270) |F (319)
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46 F (1739) |F (724) |F (1967) F (74) G(173) |G (164)
47 D (893) D (619) |D (1810) D (102) N (214) [N (184)
48 L (1451) |L (577) |L (1788) L (72) L (177) |L(228)
49 H (451) |H(326) [H (851) H (56) S(37) |S(34)
50 H (658) |H (380) |H (1066) H (61) S37) |S(@9)
51 D (893) |D (411) [D(1283) D (71) A (162) |A (169)
52 S(171) |S(64) |S(211) S (14) N (110) N (111)
53 P (674) |P(295) [P (1372) P (72) A (144) |A (163)
54 Q (636) |Q (226) |Q(824) Q54 1(82) [I1(82)
55 V (668) |V (268) |V (869) V (59) L (90) |L(110)
56 R (527) |R(240) [R(936) N.D. H@B9) |H®@#3)
57 A (684) |A (258) |A (798) A (62) N (83) |N(85)
58 H (238) |H(122) |H (341) H (36) A (83) |A(129)
59 G (405) |G (131) |G (421) G (46) K-4 K (14) |K (90)
60 K (443) K (167) |K (592) K (57) V (2182) V (68)
61|K-2 K (214) K-5 K (60) L (2201) L (81)
62|V (3256) vV (121) V (2749) |V (45) A (2052 A (113)
63|L (3474) L (105) L (2873) H (969) H@31)
64|S (489) S(19) S (459) G (1171) G (42)
65|A (2602) A (95) A (2381) Q (1220) Q (65)
66|L (2452) L (62) L (1972) K-5 K (965) K (45)
67|G (1693) G (38) G (1269) V (2425) V (36)
68|E (2120) |E-3 E (22) E (1948) E-3 L (2591) L (42)
69|A (2070) |A (1907) A (1654)|A (1931)|T (1186) T (33)
70|V (1820) |V (1171) V (1453) |V (214) |S(312) S@)
71|N (1489) |N (1100) N (1381) [N (193) |F (1730) F (19)
72(H (618) |H (454) H (606) H(®89) [G(1129)

73(T (1521) [1(970) 1(1227) |I(105) |E (1487) E-3

74(D (911) D (911) N.D. D (166) [A(1403) A (4964)

75|D (994) |D (968) D (1046) |D (194) [V (1108) V (4570)

76|1 (731) |1(791) 1(816) |1(86) |K(901) |K-6 K (5937)

77|P (578) |P (838) P (667) |P(119) N (2636) |N (3659)

78|G (476) |G (628) G (509) |G (101) L (2788) |L (3700)

79(A (635) |A (956) A (686) |A(118) D (2238) |D (2842)

80[L (577) |L (1293) L (620) |L(118) N (2286) |N (2972)
81(S(80) [S(144) S(90) |S(26) 1(1890) |I(2807)

82|K (301) |K (1044) K-3 K-6 K (480) |K (115) K (1684) [K (4045)

83 L (956) |L (2787)|L (3202) L(96) |K-7 K (4113)

84 S (125) [S(405) |S(351) S(17) |T (1096) T (1122)

85 D (598) |D (1876)|D (1593) D (66) |F (2400) F (2071)

86 L (954) |L(1901)|L (1619) L(73) |A(2179) A (1994)

87 H (262) |H(922) |H(912) H@39) [Q(1670) Q (1462)

88 A (566) |A (1709)|A (1089) A (70) |L (1911) L (1253)

89 Q (298) |Q(1358)|Q (1203) Q59 |S(250) S (173)

90 N (398) |N (1427)[N (1172) N (53) |E(1924) E (297) |E-4

91 L (671) |L (1407)|L (1087) L (56) |L(1254) L (1461)
92 R (357) |R(1561)|R (1200) R68) [H(578) H (1110)
93 V (634) |V (1052)|V (1003) C/pe-Cys C/pe-Cys
94 D (322) |D(999) |D (1344) E (1037) E-5 E (291)
95 P (368) |P(640) |P(1372) K (979) K-8 K (672)

96 V (532) |V (648) |V (553) L (2331) |L (1064)
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97 N (271) |N(585) |N (469) H (850) |H (567)

98 F (300) |F (494) |F (415) V (2029) |V (1121)

99|K-4 K (482) |K (433) |K (473) |K-7 D (1509) |D (710)
100|L (2512) |L (472) L (879) P (1450) |P (441)
101|L (2298) |L (597) L (914) E (1794) |E (597) |E-6
102|N (1617) N (216) N (758) N (1350) N (153)
103|L (1774) |L (498) L (740) F (1234) F (462)
104|C/pe-Cys|C/pe-Cys C/pe-Cys K (1129) [K-9 K (365)
105|F (1569) |F (212) F (606) L (1695) |L (284)
106]V (1478) |V (359) V (585) L (1550) |L (259)
107|V (2016) |V (424) V (692) G (977) |G (104)
108|V (2133) |V (451) V (697) N (999) N (74)
109]S (241) V (694) 1(647) |1(80)
110|G (943) G (360) L (392) |L(147)
111|T (483) R (502) 1(387) |1(54)
112|H (417) H (190) 1(563) |1(71)
113|H (633) H (257) V (258) |V (150)
114|P (834) P (327) L (252) |L(162)
115|T (457) T (166) A(237) |A(121)
116]1(695) I (244) T®O4) [T (55
117|L (784) L (426) H (106) H(37)
118|T (337) T (141) F(137) |F (43)
119|P (457) P (176) P@86) |P(39)
120|E (541) E-4 E (235) |E-4 K-10 K (63) |K(44)
121|V (513) V (401) V (195) |V (242) |E (2396) E-7 E (25)
122|H (205) H (144) H(78) |H(70) [F (1684) N.D.
123|V (539) VvV (371) V (284) |V (149) T (962) T (1215)
124]S (46) S (62) S(17) |S(24) |P(1487) P (1081)
125|L (289) L (266) L©5) |L@4 [A@Q793) A (1427)
126|D (194) D (338) D (71) |D(105) [S(316) S (87)
127|K (206) |K-5 K (318) |K-8 K (63) |K(125) [Q(1099) Q (440)
128 F (842) |F (244) |F (1051) F(58) |A (1265) A (681)
129 L (856) |L (247) |L(1116) L (83) |A(1201) A (575)
130 S (140) [S(51) |S(176) S(18) |W (797) W (141)
131 A (670) |A (326) |A (772) A (104) [T (407) T (143)
132 V (588) |V (166) |V (723) V(83) |[K(490) K-11 K (318)
133 A (665) |A (208) [A (1088) A7) L (2011) |L (309)
134 T (255) |T(103) [Q (1203) Q (61) V (1763) |V (183)
135 A (511) |A(153) [N(1172) N (51) N (1325)|N (37)
136 L (1003) |L (216) |L (1087) L (41) A (1803) |A (260)
137 T(191) |T(68) [T (216) T (62) V (1596) |V (159)
138 S(@1) |S(28) |S(69) S (14) A (1740) |A (281)
139|K-6 K (230) |K(116) |[K(377) |K-9 K (72) H (485) |H (60)
140]Y (2846) Y (66) Y (1715) Y (33) A (1530) |A (220)
141|R (698) R (61) R (310) |[R(39) L (1522) |L (153)
142 A (1459) |A (154)
143| Microheterogeneity: L (1347) |L (119)
144] «-1;104 (L) G (901) |G (56)
145| B;115(L), 116(A), 119(F) Y (873) |Y (50)
146 H (96) |H (20)

525
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Appendix 2. Alignment of amino acid sequences of 28 reptilian globins.
Clustal W (Thompson et al. 1994), a multiple alignment program, was used. The invariant amino acid residues are indicated by asterisks. The
nomenclatures of globin-chains with a numerical order are the same as Fig. 4.

1 10 20 30 40 50 60
1) G. gigantea a-1 —-VLTAGDKANVKTVWSKVGSHLEE--~YGSETLERLFVVYPSTKTYFPHFDLHH-~———~ DSPQVR
2) G. gigantea a-2 —-VLTAGDKANVKTVWSKVGSHLED---YGSETLERLFVVYPSTKTYFPHFDLHH-~———-— DSPQVR
3) C. picta bellii « —VLNAGDKANVKAVWNKVAAHVEE---YGAETLERMFTVYPQTKTYFPHFDLHH—————~— GSAQIR
4) C. caretta « ~VLSSGDKANVKSVWSKVQGHLED~---YGAETLDRMFTVFPQTKTYFSHFDVHH - —~——~ GSTQIR
5) S. punctatus a -MLSASDKANVKAIWSKVCVHAEE---YGAETLERMFTVYPSTKTYFPHFDLTH-——-——— GSAQVK
6) I. iguana a ~VLTEDDKNHIRAIWGHVDNNPEA---FGVEALTRLFLAYPATKTYFAHFDLNP—————~ GSAQIK
7) V. exanthematicus a -VLTEDDKNHVKGLWAHVHDHIDE~---IAADALTRMFLAHPASKTYFAHFDLSP—————~— DNAQIK
8) V. komodoensis a ~VLTEDDKTHVKTLWGHVHNHAEE~~~IAADALTRMFLAHPTSKTYFAHFDFSP—————~— NSANIK
9) M. gracilis a ~-VLTEEDKARVRVAWVPVSKNAEL---YGAETLTRLFAAHPTTKTYFPHFDLSP—————~— GSNDLK
10) N. naja naja «a -VLTDEDKARVRASWVPVGKNAEL---YGSETLTRMFAAHPTTKTYFPHFDLSP—————— GSNNLR
11) V. aspis a —~VLSEDDKNRVRTS~--~-VGKNPELPGEYGSETLTRMFAAHPTTKTYFPHFDLSS —~———— GSPNLK
12) C. niloticus a -VLSSDDKCNVKAVWSKVAGHLEE---YGAEALERMFCAYPQTKIYFPHFDLSH—————- GSAQIR
13) A. missippiensis a —-VLSMEDKSNVKAIWGKASGHLEE~--~YGAEALERMFCAYPQTKIYFPHFDMSH—————— NSAQIR
14) C. crocodylus a -VLSEEDKSHVKAIWGKVAGHLEE---YGAESLERMFCAYPQTKIYFPHFDMSH~————~— NSAQIR
15) G. gigantea B VHWTSEEKQYITSLWAKVNVGEVG————~ GEALARLLIVYPWTQRFFASFGNLSSANAILHNAKVL
16) G. carbonaria B VHWSCEEKQFITSLWAKVNVEEVG———~~ GEALARLLIVYPWTQRFFSSFGNLSSPNAILHNAKVL
17) C. picta bellii B VHWTADEKQLITSLWGKVNVEECG————— SEALARLLIVYPWTQRFFSTFGNLSNAEAILHNPHVH
18) C. caretta B8 THWTAEERHYITSMWDKINVAEIG————~ GESLARMLIVYPWTQKFFSDFGNLTSSSAIMHNVKIQ
19) S. punctatus B-1 VHWTAEEKHLLGSLWAKVDVADIG————~ GEALGRLLVVYPWTQRFFADFGNLSSATAICGNPRVK
20) S. punctatus B-iz VHWTAEEKQLVTSLWTKVNVDECG——~—~ GEALGRLLIVYPWTQRFFSSFGNLSSSTAICGNPRVK
21) I. iguana B VHWTAEEKQLITQVWGKIDVAQIG————— GETLACLLVVYPWTQRFFPDFGNLSNAAAICGNAKVK
22) V. exanthematicus B8 VHWTAEEKQLICSLWGKIDVGLIG————— GETLAGLLVIYPWTQRQFSHFGNLSSPTAIAGNPRVK
23) M. gracilis B VHWSAEEKQLITGLWGKVDVAEVG==—~~ GATLGKLLVVFPWTQRFFAHFGNLSSANAIICNPVVK
24) N. naja naja B VHWSAEEKQLITSLWAKVDVPEVG————-. AATLGKMMVMYPWTQRFFAHFGNLSGPSALCGNPQVR
25) L. miliaris 8 VHWTAEEKSAITAIWGKVDVAAIG————— GEALCRLLIVYPWTQRFFTSFGNLSNAAAIQSNAQVK
26) C. niloticus B8 ASFDPHEKQLIGDLWHKVDVAHCG————~ GEALSRMLIVYPWKRRYFENFGDISNAQAIMHNEKVQ
27) A. missippiensis B8 ASFDAHERKFIVDLWAKVDVAQCG—=———~- ADALSRMLIVYPWKRRYFEHFGKMCNAHDILHNSKVQ
28) C. crocodylus B SPFSAHEESLIVDLWAKVDVASCG————~— GDALSRMLIIYPWKRRYFEHFGKLSTDQDVLHNEKIR
* * *  x
70 80 90 100 110 120 130 140 150

1) AHGKKVLSALGEAVNHIDDIPGALSKLSDLHAQNLRVDPVNFKLLNLCFVVVSGTHHPTILTPEVHVSLDKFLSAVATALTSKYR
2) AHGKKVLSALGEAVNHIDDIPGALSKLSDLHAQNLRVDPVNFKLLNLCFVVVVGRHHPTILTPEVHVSLDKFLSAVAQNLTSKYR
3) THGKKVLTALGEAVNHIDDLASALSKLDSTHAQTLRVDPVNFKFLNHCFLVVVATHQPSVLTPEVHVSLDKFLSAVGTVLTSKYR
4) SHGKKVMLALGDAVNHIDDIATALSALSDKHAHILRVDPVNFKLLSHCLLVVVARHHPTLFTPDVHVSLDKFMGTVSTVLTSKYR
5) AHGKKVVNAMGEAVNHLDDMAGALLKLSDLHAQKLRVDPVNFKLLAQCFLVVLGVHHPAALTPEVHASLDKFLCAVGLVLTAKYR
6) AHGKKVVDALTQAVNNLDDIPDALAKLADLHAEKLRVDPVNFGLLGHCILVTIAAHNHGPLKADVALSMDKFLTKVAKTLVAHYR
7) AHGKKVANALNQAVAHLDDIKGTLSKLSELHAQQLRVDPVNFGFLRHCLEVSIAAHLHDHLKASVIVSLDKFLEEVCKDLVSKYR
8) AHGKKVANALNQAVNHLDDIGGTLSKLSDLHAQQLRVDPVNFGFLRHCLEVSTAANLHDHLKASLIVSLDKFLEEVCKVLVSKYR
9) VHGKKVIDALTEAVNNLDDVAGALSKLSDLHAQKLRVDPDNFQFLGLCLEVTIAAHSGGPLKPEVLLSVDKFLGQISKVLASRYR
10) AHGKKVIDAITEAVNNLDDVAGTLSKLSDLHAQKLRVDPVNFKLLAHCLLVTIAAHNGGVLKPEVIVSLDKFLGDLSKDLVSKYR
11) AHGKKVIDALDNAVEGLDDAVATLSKLSDLHAQKLRVDPANFKILSQCLLSTLANHRNPEFGPAVLASVDKFLCNVSEVLESKYR
12) AHGKKVFAALHEAVNHIDDLPGALCRLSELHAHSLRVDPVNFKFLAQCVLVVVATIHHPGSLTPEVHASLDKFLCAVSSVLTSKYR
13) AHGKKVFSALHEAVNHIDDLPGALCRLSELHAHSLRVDPVNFKFLAHCVLVVFAIHHPSALSPETHASLDKFLCAVSAVLTSKYR
14) GHGKKVFAALHDAVNHIDDLAGALCRLSDLHAHNLRVDPVNFKFLSQCILVVFGVHHPCSLTPEVHASLDKFLCAVSAMLTSKYR

15) AHGQKVLTSFGEAVKNLDNIKKTFAQLSELHCEKLHVDPENFKLLGNILIIVLATHFPKEFTPASQAAWTKLVNAVAHALALGYH
16) AHGKKVLTSFGEAVKNLDNIKKTFAQLSELHCEKLHVDPENFKLLGNILIIVLATHFPKEFTPASQAAWTKLVNAVAHALALGYH
17) AHGKKVLTSFGEAVKNLDHIKQTFATLSKLHCEKLHVDPENFKLLGNVLIIVLASHFTKEFTPACQAAWQKLVSAVAHALALGYH
18) EHGKKVLNSFGSAVKNMDHIKETFADLSKLHCETLHVDPENFKLLGSILI IVLAMHFGKEPTPTWQAAWQKLVSAVAHALTLQYH
19) AHGKKVFTMFGEALKHLDNLKETFASLSELHCDKLHVDTENFKLLGNLVIVVLAARLHDSFTPAAQAAFHKLAYSVAHALARRYH
20) AHGKKVFTSFGEAVKNLDNIKATYAKLSELHCEKLHVDPONFNLLGDIFIIVLAAHFGKDFTPACQAAWQKLVRVVAHALAYHYH
21) AHGKKVLTSFGDAVKNLDNIKDTFAKLSELHCDKLHVDPVNFRLLGNVMITRLAAHFGKDFTPACHAAFQKLTGAVAHALARRYH
22) AHGKKVLTSFGDAIKNLDNIKDTFAKLSELHCDKLHVDPTNFKLLGNVLVIVLADHHGKEFTPAHHAAYQKLVNVVSHSLARRYH
23) AHGKKVLTSFGEAIKHLDSIKETFAKLSELHCEKLHVDPENFRLLGNILIIVLAGHHGKEFTPSTHAAFQKLVRAVAHSLARVYH
24) AHGKKVLTSFGEALKHLDNVKETFAKLSELHFDKLHVDPENFKLLGNVLIIVLAGHHGKEFTPSTHASFQKLVNVVAHALARRYH
25) AHGKKVFTAFGDAVKNPEGVKDTFAKLSELHCDKLHVDPVNFKLLGQILITVLAAHFGKDFTPNVQAAYQKLVSVVAHALAHQYH
26) AHGKKVLASFGEAVCHLDGIRAHFANLSKLHCEKLHVDPENFKLLGDIIIIVLAAHYPKDFGLECHAAYQKLVRQVAAATAAEYH
27) EHGKKVLASFGEAVKHLDNIKGHFANLSKLHCEKFHVDPENFKLLGDIIIIVLAAHHPEDFSVECHAAFQKLVRQVAAATLAAEYH
28) EHGKKVLASFGEAVKHLDNIKGHFAHLSKLHFEKFHVDCENFKLLGDIIIVVLGMHHPKDFTLQTHAAFQKLVRHVAAALSAEYH
* * * * *

**k *k * % * % * *



ZOOLOGICAL SCIENCE 19: 197-206 {2002)

The Primary Structure of Hemoglobin D from the Aldabra Giant

Tortoise, Geochelone gigantea

Fumio Shishikura®

Department of Biology, Nihon University School of Medicine,
Oyaguchi-kamimachi, ltabashi-ku, Tokyo 173-8610, Japan

ABSTRACT—The complete primary structures of oP-2- and B-globin of hemoglobin D (Hb D) from the
Aldabra giant tortoise, Geochelone gigantea, have been constructed by amino acid sequencing analysis
in assistance with nucleotide sequencing analysis of PCR fragments amplified using degenerate oligo-
nucleotide primers. Using computer-assisted sequence comparisons, the o”-2-globin shared a 92.0%
seguence identity versus uD-globin of Geochelone carbonaria, a 75.2% versus aD-giobin of Aves (Rhea
americand) and a 62.4% versus aA-gIobin of Hb A expressed in adult red blood cells of Geochelone
gigantea. Additionally, judging from their primary structures, an identical B-globin was common to the two
hemoglobin components, Hb A and Hb D. The oP-2- and B-globin genes contained the three-exon and two-
intron configurations and showed the characteristic of all functional vertebrate hemoglobin genes except
an abnormal GC dinucleotide instead of the invariant GT at the 5’ end of the second intron sequence. The
introns of aP-2-globin gene were both small (224-bpf/first intron, 227-bp/second intron) such that they were
quite similar to those of adult a-type globins; the B-globin gene has one small intron (approximately 130-
bp) and one large intron {(approximately 1590-bp).

A phylogenetic tree constructed on primary structures of 7 ozD-globins from Reptilia (4 species of turtles,
2 species of squamates, and 1 species of sphenodontids) and two embryonic o-like globins from Aves
(Gullus gullus) and Mammals (Homo sapiens) showed the following results: (1) aD-gIobins except those
of squamates were clustered, in which Sphenodon punctatus was a closer species to birds than turtles;
(2) separation of the o*- and oP-globin genes occurred approximately 250 million years ago after the
embryonic a-type globin-genes (n’ and £) first split off from the ancestor of a-type globin gene family.

Key words: PCR, degenerate primer, nuclectide sequence, intron, exon
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INTRODUCTION

Amniota (reptiles, birds and mammals), in general,
have two or more hemoglobin components (Brown and
Ingram, 1974; Moss and Hamilton, 1974; Lawn et al., 1978;
Efstratiadis et al,, 1980; Bunn and Forget, 1986; Fushitani
et al., 1996; Gorr et al, 1998) that are expressed according
to the demands of different physiological conditions. Among
them, hemoglobin D (Hb D) was first found in birds as a
minor compoenent of the embryonic and adult definitive
erythrocytes (Hagopian and Ingram, 1971; Brown and
Ingram, 1974). Based on functional studies of Hb D, the
presence of aD-gIobin raises the oxygen affinity and might
be one such adaptation of insufficient oxygen supply as
observed in the embryonic stages (Dodgson et al., 1981;
Chapman et al., 1982) or extreme hypoxic and even anoxic
conditions (Ricknagel and Braunitzer, 1988). On the other
* Corresponding author: Tel. +81-3-3972-8111(ext. 2291);

FAX. +81-3-3972-0027.
E-mail: fshishi@med.nihon-u.ac.jp

hand, the primary structure of aD-globin of Hb D shows
closely resemblance with embryonic hemoglobins (Chap-
man et al, 1982) and thus, the Hb D is of interest for the
study of the molecular evolution of Amniota globins because
the distribution of the oP-globin, to date, has been restricted
in Aves and Reptilia (RUcknagel ef al, 1984; Abbasi et al.,
1988; Rucknagel ef al,, 1988; Matsuura ef al.,, 1989; Fushi-
tani et al., 1996; Gorr ef al., 1998; Accession No. AF304335
in GenBank; Shishikura and Takami, 2001), except for
Crocodilia (Leclercq et al., 1981; Leclercq et al., 1982). Most
of the studies on globin gene structures have been carried
out on birds and mammals {Bunn and Forget, 1986; Klein-
schmidt and Sgouros, 1987), however, only one study has
been conducted on reptilian aD-globin cDNA structure from
globin mRNA isolated from the red blood cells present in the
adult Geochelone carbonaria (Accession No. AF304335 in
GenBank). In addition to adult aP-type globins, there are
many genes related to o-globins such as embryonic o-like
globins termed n'-globin (Chapman et al., 1980) for birds
and £-globin (Aschauer et al, 1981) for mammals, all of
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which are important clues for understanding the molecular
evolution of a- and o-related globins.

This study describes the primary structures of ¢°-2- and
BD-gIobin of G. gigantea Hb D (hereafter the author uses B
instead of BD because the primary structure of B°-globin pre-
pared from Hb D was definitively shown to be identical when
compared with that of B-globin prepared from the G.
gigantea Hb A) in assistance with nucleotide sequences of
the two globin genes of G. gigantea, and constructs a phy-
logenetic tree concerning the molecular evolution of oF-type
globins. The tree also shows the relationships of o~ and
embryonic o-related globins, 7'- and {-globin, as well as a
few representatives of aA—type globins from vertebrates.
This study first describes the genomic structures of globins
amplified by PCR with degenerate primers, and then, the
nucleotide sequences, to ascertain the amino acid
sequences of oP-2- and B-globin. During the course of this
study, it was alsc demonstrated that an identical B-globin
was shared in both Hb A and Hb D as predicted in the pre-
vious study (Shishikura and Takami, 2001).

MATERIALS AND METHODS

Materials

Hb D from the Aldabra giant tortoise, G. gigantea, was pre-
pared as described in the previous study (Shishikura and Takami,
2001).

Acetonitrile, ammonium sulfate, ammeonium bicarbonate, tri-n-
butyl phosphine, 4-vinyl pyridine and V8 protease (from Staphylo-
coccus aureus strain V8) were purchased from Nakalai Tesque, Inc.
(Kyoto, Japan). Separation columns, Alkyl Superose column HR5/5
and Resource column (prepackaged with 3 ml source 15 RPC gel
matrix), were purchased and placed in a fast protein liquid chroma-
tography (FPLC) system (Amersham Pharmacia Biotech, Upsala,
Sweden). Lysyl endopeptidase (Achromobactor protease |) was
purchased from Wako Pure Chemical Industries, Ltd. {Tokyo,
Japan).

Taq DNA polymerase and GenElute Agarose Spin Columns
were obtained from Sigma-Aldrich Co. (St. Louis, MO, USA). DNA
molecular standard markers, pHY Marker (Takara Shuzo Co., Ltd.,
Shiga, Japan) and 100-bp DNA Ladder (New England Biolabs Inc.,
MA, USA) were used. Sequencing primers, M13 forward 17-mer (5-
GTA AAA CGA CGG CCA GT-3') and PUC/M13 reverse 17-mer
(5-CAG GAA ACA GCT ATG AC-3'), were obtained from Sigma-
Aldorich Co. and Promega Co. (Madison, W, USA), respectively. A
BigDye Terminator Cycle Sequencing Ready Reaction Kit was pur-
chased from Perkin-Elmer Japan Co. Ltd (Tokyo, Japan).

All other chemicals and solvents used were the most purified
grade commercially available.

Globin-chain separation

The Hb D was modified by reduction and S-pyridylethylation
(Friedman et al., 1970) and then directly applied on a reversed-
phase column (Resource column), which had been equilibrated with
a 0.1% TFA solution. Removal of unincorporated reagents bound
on the Resource column could be achieved by washing with an
excess amount of 0.1% TFA solution until the base line was below
0.05 at 280 nm. The globin-peptides were, then, eluted from the col-
umn by a linear gradient with 60% acetonitrile in 0.08% TFA. Flow
rates were maintained at 0.5 ml/min. All fractions were monitored at
214 nm and 280 nm by a spectrophotometer {(Model 116, Gilson).

Enzymatic digestion and peptide separation

Lysyl endopeptidase digestion was performed essentially with
modifications of Jekel ef af (1983), the details of which were previ-
ously described (Shishikura and Takami, 2001). To obtain overlap-
ping peptides, the globin (about 10 nmoles) was digested with the
V8 protease at a ratio of 1:100 (w/w, enzyme/substrate) for 48 hr at
37°C in a 0.1M Tris-HCI soluticn, pH 8.5 containing 1 M urea.

All peptides derived from the parent molecules were separated
using a reversed-phased column, Resource, in a linear gradient
with 60% acetonitrile in 0.08% TFA. Flow rates were maintained at
0.5 mli/min. All fractions were monitored at 214 nm and 280 nm by
a spectrophotometer (Model 116, Gilson). When necessary, re-
chromatography of selected peptides was performed as previously
described (Shishikura et al., 1987).

Amino acid sequencing

Sequence analysis was performed using a Shimadzu gas
phase protein sequencer, PPSQ-10, equipped with a PTH-10
amino acid analyzer (Shimadzu Co., Kyoto, Japan). Phenylthiohy-
dantein (PTH)-derivatives from the sequencer were separated and
quantified. PTH-cysteine was detected as pyridylethylated-PTH-
cysteine, the elution point of which was determined as described in
the manufacturer's manual.

Isolation of genomic DNA

Prior to DNA extraction, fixed-tissue samples (80-120 mg) in
absolute alcohol were dissolved in 600 ul DNA extraction buffer (10
mM Tris, 10 mM EDTA, 150 mM NaCl, pH 8.0) in a micro-centrifuge
tube to obtain wet forms. Samples were treated with SDS (final con-
centration: 0.4%) and proteinase K (final concentration: 20 mg/ml),
mixed well, and incubated for 60 min at 55°C, followed by overnight
incubation at 37°C. The extraction of DNA was performed by the
procedure described by Sambrook et al. (1988) with minor alter-
ations: two rounds of precipitation with ethanol and spooling the
precipitate purified DNA. DNA was then resuspended in 1 ml of TE
buffer (10 mM Tris/HCI buffer containing 1 mM EDTA, pH 8.0) and
stored at 4°C: about 0.1 mg/ml of high-molecular-weight genomic
DNA was obtained, as evaluated by the absorption spectrum and
by 0.8% agarose gel electrophoresis.

Primers design

Degenerate primers were designed based on the amino acid
sequences of lysyl endopeptidase digested fragments of parent
molecules. In order to sequence the PCR amplified fragments with
a BigDye Terminator Cycle Sequencing Ready Reaction Kit, the
degenerate oligo-nucleotide primers were tailed with the M13 for-
ward or M 13 reverse sequencing primer tail (for the tail sequences
shown above). A list of degenerate primers used in PCR amplifica-
tions is shown in Table 1.

PCR conditions

The PCR amplifications were performed in a 25-pl volume
centaining about 100 ng of genomic DNA template, 3 to 30 pmoles
of each degenerate primer, deoxynucleotide triphosphates (400
uM} and 1.25 U of Tag DNA polymerase in the buffer conditions
recommended by the manufacturer, 2.5 mM MgClz. The reactions
started with denaturation at 95°C for 3 min, followed by 45 cycles
and ended with 7 min of extension at 72°C on a DNA Thermal
Cycler 9700 (Perkin-Elmer, Norwalk, CT, USA). The first five cycle
profile began with denaturation for 1 min at 95°C, 5-stepwise differ-
ent annealing temperatures (65°C, 62.5°C, 80°C, 57.5°C and 55°C)
for 10 sec each, and ended with elongation for 1min every cycle at
72°C. The thermal profile including denaturation of the first & cycles
modified the procedures described by Sachadyn et al. (1998),
Skantar and Carta (2000), and Don et af. (1991). The remaining
cycles were programmed according to the method recommended
by the manufacturer.
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Agarose gel electrophoresis

A 1.5% agarose gel was used to examine the purity and the
size range of the PCR products amplified from the Geochelone
genomic DNA. In each lane, except lanes of DNA-markers, 10 pl of
each of the amplified DNA samples were loaded. The two DNA
molecular weight standard markers were used. The gel was run in
TBE (Tris-Borate-EDTA) buffer at 110V for 50 min. The results were
then recorded using a KODAK Electrophoresis Documentation and
Analysis System 290 (EDAS 290), and analyzed by a 1D Image
Analysis Software (v. 3.5.4; Eastman Kodak Co., Rochester, NY,
USA).

Extraction of PCR products and nucleotide sequencing analy-
sis

After timming away excess agarose, the gel slices (<500 ng)
containing the PCR products were placed into the GenElute Agar-
ose Spin column and centrifuged for 10 min at 14,000 x g. The fil-
tfrate was concentrated by Microcon-100 and sequenced using the
ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction
Kit with the following modifications to the manufacturer's recom-
mended protocoel: 3.6 picomoles of M13 sequencing primer (forward
or reverse) were annealed with about 32 ng of PCR product by mix-
ing primer and template with 8 pl of Terminator Ready Reaction Mix
in a final volume of 20 pl. This mixture was placed in a GeneAmp
PCR system 9700 and subjected to cycle sequencing depending on
the manufacturer's recommended protocol: start with heating for 10
sec at 96°C, and then 25 cycles of 96°C for 10 sec, 50°C for 5 sec,
and 60°C for 4 min and reactions allowed to end with rapid thermal
ramp at 4°C. Purifying extension products and the removal of unin-
corporated dye terminators in sequencing reactions were subjected
to Centri-Sep spin columns (Princeton Separations P/N CS-901).
Sequences of the PCR fragments were determined for both strands
with the BigDye Primer Cycle Sequencing Ready Reaction Kit and
the samples were on an ABI PRISM 310 Genetic Analyzer (Perkin-
Elmer Japan Co. Lid. Tokya).

Computer analysis

A multiple alignment program, Clustal W (Thompson et al.,
1994), was used in the alignment of reptilian and other vertebrate’s
globin primary structures. Pair-wise distances amang the globin
sequences were analyzed using a computer program PROTDIST
stored in the PHYLIP package (v. 3.51C; Felsenstein, 1993) under
the Kimura-formula option. Based on the pair-wise distances,
Neighbor-joining/UPGMA in NEIGHBOR (Felsenstein, 1993) was
used to construct the phylogenetic tree of globins. Pair-wise align-
ments of DNA sequences were carried out using softwares of DNA-
SIS as well as DNA Strider (V. 1.0.1).

RESULTS AND DISCUSSION

Globin isolation

In a preceding paper (Shishikura and Takami, 2001) we
have described the isolation of the two hemoglobin compo-
nents of the Aldabra giant tortoise G. gitantea, in which the
two were designated as Hb A and Hb D. The nomenclature
of Hb A and Hb D was adopted in Ingram’s laboratory
(Hagopian and Ingram, 1971; Brown and Ingram, 1974)
where the various domestic fowl hemoglobins were defined.
Among them, the adult definitive erythrocytes contained the
major adult hemoglobin (Hb A) and the minor definitive
hemoglobin (Hb D). After establishing the complete amino
acid sequences of globins as described below, the presence
of Hb D in the Aldabra giant tortoise, G. gigantea, was com-
pletely confirmed when compared with the known primary

structures of a”-globins (Kleinshmidt and Sgouros, 1987)
specific to the Hb D. The advantage of modifying the protein
by reduction and S-pyridylethylation also applied for separa-
tion of globin-constituents from the Hb D. As the results,
three major fractions, a-1, «-2 and [ in the order of elution,
were separated as shown in Fig. 1: the two peaks, o-1 and
o-2, were identical to each other having characteristics of
aD-type globins so far sequenced until the first 20 N-terminal
amino acid residues, but in contrast their chromatograms on
reversed-phase column were shown as distinctly different.
There might be sequence microheterogeneity of their pri-
mary structures as found in those of Hb A (Shishikura and

0.1/214 nm
0.05/ 280 nm

280 nm
1

L 1 1 1

50 60 70 80 90 100 min

Fig. 1. Separation of globin-constituents from reduced and 5-
pyridylethylated G. gigantea Hb D (about 2 mg) on Resource col-
umn. A linear gradient was used between 0.1% TFA in water and
60% acetonitrile in 0.08% at a flow rate of 0.5 ml/min. Major peaks
are designated as o-1, o-2 and B, respectively. Bars indicate frac-
tions used for sequencing.
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Fig. 2. Strategies and complete amino acid sequences of o-2 (top) and B {bottom) globins of Hb D from the Aldabra giant tortoise, G.
gigantea. The complete amino acid sequences of the -2 (top), and 3 (bottom) globins of G. gigantea Hb D have been established. Fragments
generated by cleavage with lysyl endopeptidase and overlapping peptides obtained by V8 protease are used for the amino acid sequence
determination. The residues marked with continuous lines are those identified by Edman degradation method. Vertical lines represent the
beginning and the end of sequencing. Dashed lines indicate the residues not determined but which might be included in the fragment. Peptide

nomenclatures are as follows: lysyl endopeptidase; K, V8 protease; E.

Takami, 2001). Hence, the author first sequenced the o-2-
globin from the two a-types of globins.

Sequence strategies

For establishing complete primary structures of a-2-
and B-globin, two sequencing methodologies, protein and
DNA sequencing, were carried out. First, the parent mole-
cules and their peptide fragments were sequenced and
aligned tentatively with the assistance of sequence similari-
ties toward the known primary structures of reptilian o- and
B-globins, in particular, those obtained from the G. gigantea
Hb A (Shishikura and Takami, 2001). Fig. 2 shows the
results of amino acid sequence analyses of o”-2- and B-
globin. Appendix provides the data supporting the amino
acid sequences in Fig. 2. The aD-2-gIobin chain was com-
posed of 141 amino acid residues and the B-globin chain
was composed of 146 residues. Two lysine-lysine residues
appeared in positions 60-61 of aD-Q—globin chain and 82-83
in B-globin chain were difficult to determine by analyzing the
peptide fragments derived from digestions with lysyl
endopeptidase. To complete the primary structure, peptide
fragments containing the lysine-lysine residues generated
by another enzymatic digestion such as V8 protease are
required to be sequenced. This was done in the construction
of aP-2-globin structure (Fig. 2, top) but required time-con-
suming work. To cope with time-consuming problems in

bp
= 4870 —
bp
1500 2016 s bp
— 1360 e 55
1000 == wm =2 926 o —
658 700
500 - :
489  m 450
100 200
Ml 1 M2 2 M2 3 Ml

Fig. 3. Agarose gel electrophoreses of PCR products amplified
from G. gigantea genomic DNA using degenerate primers. Lane 1;
an 870-bp fragment amplified with degenerate PCR primers M13a-1
and M13a-2, Lane 2; a 480-bp fragment amplified with degenerate
PCR primers M13b-1 and M13b-2, Lane 3; 1.75-kbp fragment
amplified with degenerate PCR primers M13b-3 and M13b-4, Lanes
M1 and M2; DNA molecular standard markers, 100-bp DNA Ladder
(M1) and pHY Marker (M2)
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determining primary structures, the following methods were
used: {1} based on sequencing information of both intact
globins and digested fragments, degenerate oligo-nucle-
otide primers were synthesized with a M13 forward or M13
reverse sequencing primer tail; (2) using these primers (for-
ward and reverse), a target gene was amplified by PCR
from genomic DNA as a template; (3) the PCR fragment
was purified and sequenced by cycle sequencing with the
M13 forward or reverse sequencing primer. Fig. 3 shows
amplified fragments on agarose gel electrophoresis: An 870-
bp fragment was generated from the PCR-amplification of
genomic DNA using primers M13a-1 and M13a-2, assuming
amplified complete coding regions (three exons) and inter-
viewing regions (two introns), and the remaining, 480-bp
fragment and 1.75-kbp fragment, were amplified using
primer-sets of M13b-1/M13b-2 and M13b-3/M13b-4, respec-
tively; (4) nucleotide sequences of the three PCR fragments
were determined with manufactured M13 sequencing prim-
ers, the BigDye Terminator Cycle Sequencing Ready Reac-
tion Kit and the ABI PRISM 310 Genetic Analyzer; (5) finally,
both protein and DNA sequencing data were complemen-
tary combined to establish complete structures of the o-2-
and B-globin chains of Geochefone Hb D. As shown in Fig.
2 and Table 2 (2A and 2B), the two primary structures rein-
forced each other by the two different methods.

In comparison with the structural data of B-globin of Hb
A (Shishikura and Takami, 2001), the primary structure of 3-
globin derived from the Hb D was completely identical, indi-
cating that the p-globin was common in the construction of
the two adult hemoglobin components, Hb A and Hb D. This
finding supports the studies of Riicknagel and Braunitzer
(1988) who described that the red blood cells shared the
same B-globin chains in Hb A and Hb D. The sharing of
identical 3-globin chains has also been demonstrated in
crocodiles (Leclercq et al., 1981; Leclercq et al., 1982), while
lizards and snakes express two adult B-types of globins
(Ricknagel ef al., 1988; Matsuura et al,, 1989; Abbasi and
Braunitzer, 1991; Naqgvi et al., 1994; Fushitani et al., 1996;
Gorr et al., 1998). In this context, adult mammals (Braunitzer
et al., 1961; Leclercq et al., 1981) and birds (Rucknagel et
al., 1984, Oberthir et al, 1983; Oberthir ef al., 1986) have
been reported to have one kind of B-globin, but adult frogs
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(Kndchel et af.,, 1983; Patient et al,, 1983) contained two
subtypes of B-globin chains. Due to an inconsistency in the
number of subtypes of adult B-type globin-chains among
amphibians, reptiles, birds and mammals, reinvestigations
are needed, especially, in regards to the evolution of Tet-
rapoda (Benton, 1990; Hardison, 1998).

Comparison of the primary structure of o-type globins
within G. gigantea, aD-a-gIobin of G. gigantea differs from
a®-globin in 53 amino acid residues (62.4% identity), but
when compared with homologous globin chains found in
adult Geochelone carbonaria (a different species of tor-
toises) and adult Rhea Americana (a species of birds), only
7 (95.0% idnetity) and 35 (75.2% identity) amino acid resi-
dues were substituted, respectively.

PCR ampilification of globin gene by degenerate prim-
ers

Two degenerate oligo-nucleotides (M13a-1 and M13a-
2 in Table 1) which were designed from the regions of N-ter-
minal (8 amino acid residues in length) and C-terminal (8
amino acid residues in length) of aP-2-globin successively
amplified a PCR-product with 870-bp estimated by migration
distance on agarose gel electrophoresis (Fig. 3, fane 7). On
the contrary, in the case of amplification of B-globin using
M13b-1 and M13b-4 primers no product was observed on
agarose gel electrophoresis, indicating that the whole cod-
ing region of 3-globin gene was impossible to amplify at
once using two degenerate primers designed by its N-termi-
nal and C-terminal amino acid sequences. It seems to be
difficult to amplify extremely long nucleotides such the case
over 1.75-kbp PCR-fragment. Hence, several sets of sense
and anti-sense degenerate primers were synthesized and
used for amplification of B-globin gene in total with the
genomic DNA: the two sets of sense and anti-sense primers
(M13b-1/M13b-2 and M13b-3/M13b-4 shown in Table 1)
produced a single fragment in each PCR, in which
nucleotide-sized fragments were determined to be a 480-bp
fragment and a 1.75-kbp fragment, respectively (Fig. 3, lane
2 and 3). Both products and the 870-bp fragment of aP-2-
globin gene were sequenced from both sides and aligned
by computer-assisted programs. Table 2A and 2B show
alignments of nucleotide sequences in encompassing whole

Table 1. Oligo-nucelotide primers used in this study
Gene Primer Name Nucleotide sequences Reference  Degeneracy
1 10 20 {fold)
Hb D -2 M13a-1(Forward) MI3- A TGYTNACNUGARGAY G AYAART© CA N-terminal 512
M13a-2(Reverse) M13- A AY T TR TCRTANGU CNACYTGNATC C-terminal 1024
1 10 20 20
HbD B Mi3b-1(Forward-1) M13- G T G C A C T GG A C Y WS NUGARGAGA A G N-terminal 64
M13b-2(Reverse-1) M13- C T T G A AGTTCTCRGGRTTCCATG CRBRTG 10497 8
M13b-3(Forward-2) M13- C A Y G T G G A Y C CY G AGAACTTOGCAAG 97104 8
Mi13b-4(Reverse-2) MI13- G T G G T AV CC S AGRGGCCAGRBGT CRT G C-terminal 48

M13 forward sequence: 5'-GTA AAA CGA CGG CCA GT-3
M13 reverse sequence: 5-CAG GAA ACA GCT ATG AC-3

The International Union of Pure and Applied Chemistry Symbols used to denote multiple nucleotides are as follows: N=A+G+C+T; R=A+G; S=C+G; V=A+G+C;

W=A+T; Y=C+T.
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Table 2A.

F. Shishikura

Nucleotide sequences of three exons and exon-intron boundaries of «-2-globin gene

1

46
91

ATG CTA ACA GAG

AAG GTG CTG GAG
AG

GAC GAC
CAC CAG

Exon-1

AAG
GAG

CAG CTG
GAC TTT

ATC
GGG

CAA
GCC

CAT
GAG

GTG
GCC

TGG
CTG

GAG
GAG

Intron-1 1

gta ggg ccc
(46-168 not shown)

99 999 act

gg9g gca

gge

169 ttg  gga tic

ggc

act

ccg  gge gca ggg tgc  agg gag gaa

gtc {ct gac clc ccet ccc  ccg  cag

Exon-2 G ATG TTC
TTC GAC CTG
AAG GTG GTG
CTC AGC GCG

TTG CGC GTG

ATC
CAT
GGC
ACG
GAC

GTC
CAT
GCC
CTC
CCaG

TAC
GAC
CTG
TCC
GTC

44

89
134
179

ccc
TCG
GGG
GAG
AAC

TCC
GAA
GAC
CTC
TTC

ACC
CAG
GCC
AGC
AAG

AAG
ATC
GTG
AAC

ACC
CGC
AAG
CTG

TAC
CAC
CAC
CAC

TTC
CAC
ATC
GCC

CCC
GGC
GAC
TAC

CAC
AAG
AAC
AAC

Intron-2 gca agt geca tac

(46-181 not shown)
ggc__cga ggg

gge ggc

182 cig gct gcc

cag

gct

gaa gag tc ccg g9y g9t gcg  gga

gac cca gtg cac i gct ttg cag

1
46
91

Exon-3 CTG CTG TCC
CGC GAG TAC

GCC GCC GTC

CAC
ACC
TCG

TGC
CCG
GCG

TTC
CAG
GTG

CAG
GTG
CTG

GTG
CAA
GCT

GTG
GTC
GAG

CTG
GCC
AAG

GGC
TAT
TAC

GCG
GAC
CGG

CAC
AAG

TTG
TTC

GGC
CTG

Table 2B. Nucleotide sequences of three exons and exen-intron boundaries of

B-globin gene

1
46

GTG CAC TGG ACC AGC GAG
GMC AAG GTC AAC GTG GRG

Exon-1

GAG
GAA

AAG
GTG

CAG
GGT

TWC ATT
GGC  GAA

ACC
GCC

AGT
CTG

CTG
GCC

TGG
AG

Intron-1 1 gta ggc fcg agce cic aca
(approximately 40 nucleotides not shown)

gca gta acc ctg tgt  cig

tag

tct

ata tct gce tcg cat tge tce tct

ctg clc cig tct  cce ot ctc  tag

G CTG CTG ATC GTC TAC
TIT GGG AAC CTS TCC AGC
GTG STT GCC CAT GGC MAG
GTG AAG AAC CTG GAC AAC
GAG CTG CAC TGC SAR AAG

Exon-2
44

89

134

179

CCC

SCC
AAA
ATC
CTG

TGG
AAC
GTG
AAG
CAT

TTT
SRC
TTT
GCC
GAG

ACC
GCC
CTG
RMM
GTG

CAG
ATC
ACC
ACG
GAT

AGG
MTG
TCS
TWC
CCT

TTC
AAC
GGG
CAG
AAC

KCT
GCC
GAA
CTG
TTC

TCC
AAG
GCT
AGC
AAG

Intron-2 gtg agt ccg gct ctg gat

tga

(approximately 1590 nucleotides not shown)

cag agc ggt gct gac cca

gcg

cceC tct tce cag cce cct ttc cat

ggt atc ttc ttc ctt ctc cic cag

1
46
91

CTC
AAG
AAT

CTG GGC AAT ATC CTC
GAG TTC ACT CCT GCC
GCA GTG GCC CAT GCT

Exon-3

ATC
AGT
CTG

ATC
CAG
GCT

GTC CTG
GCC GCC
CTC GGT

GCC ACC
TGG ACA
TAC CAC

CAC
AAG

TTC
CTC

CCA
GTC

The International Union of Pure and Applied Chemistry Symbols used to denote multiple nucleotides are as follwos: K=G

orT;,M=AorC; R=AorG;S=GorC,W=AorT.

exon regions of the o”-2- and the B-globin gene and exon-
intron boundaries of the two genes. Breathnach and
Chambon (1981) stated that there was no exception to the
GT-AG rule according to which all intron sequences start
with GT and end with AG. However, Table 2A shows that a
unique structural feature of the o-2-globin gene is a GC
instead of a GT dinucleotide at the 5’ end of the second
intron sequence. This finding is the first exception found in
reptilian hemoglobin gene and supported the previous stud-
ies on gene structures of bird’s hemoeglobin (Erbil and Niess-
ing, 1983; Dodgson and Engel, 1983). Erbil and Niessing
(1983) found the T to C transition at the second intron posi-
tion 2 of ozD-globin gene from a duck, Cairina moschata. This
evidence together with the unigue structure of (xD-2-globin
gene found in the tortoise strongly indicates that the two ani-

mals, tortoises and birds, are the closest living relatives to
each other.

When compared with the intron lengths among the four
a-types of globin genes (Table 3), it was clearly determined
that the Geochelone aD-2-globin gene structure corre-
sponded to that of the adult chicken o°-globin gene and not
to the embryonic chicken r'-globin gene (Engel et af.,, 1983)
nor the embryonic human {-globin gene (Proudfoot et al.,
1982). On the contrary, the G. gigantea B-globin gene was
hard to classify since the second intron length (about 1.59-
kbp) was large compared with those of the adult B-globin
gene (Lawn et al.,, 1980; Dolan et al. 1983), including embry-
onic B-like globins (Efstratiadis et al., 1980; Chapman et al.,
1981). In addition, the evolutionary relatedness of the intron
sizes of the Geochelone globin genes to the other amniotes
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Table 3. Comparison of exson and intron sizes (in bp) of o -2- and B-globin genes

Class Globin-gene Name  Exon-1 1stintron Exon-2 2nd Intron Exon-3  Total Reference
Reptilia  G. gigantea o®-2 92 214 205 227 126 864  This study

G. carbonaria a” 92 n.d. 205 n.d. 1286 nd.  AF304335in GenBank
Aves Gullus gulius o® 92 148 205 261 126 832  Dodgson and Engel, 1983

Gullus gullus 7 92 577 205 294 126 1294 Engel et al., 1983
Mammalia Homo sapiens ¢ 92 886 205 239 126 1548  Proudfoot et al.,1982

Homo sapiens o 92 117 205 141 126 681 Liebhaber et al.,1980
Reptilia  G. gigantea 89 130" 223 1590" 126  2158" This study

G. carbonaria § 89 n.d. 223 n.d. 126 nd. Bordin efal,1997
Aves Gullus guflus p 82 92 223 810 126 1333 Dolan et af,, 1983
Mammalia Homo sapiens B 89 130 223 850 126 1418 Lawn et al, 1980
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n.d.; not determined. Intron sizes could not be determined as this sequence is only represented by an RT-PCR product.
1) Intron sizes were estimated by migration distances on agarose gel electorphoresis (Fig. 4).

globin genes was defined for the first time.

Reptilian phylogeny and diversity based on aP-Globin
structures

Shishikura and Takami (2001) have constructed a phy-
logenetic tree based on - and B-globins of 28 reptilian Hb
As, by which the molecular phylogeny of Reptilia is highly
correlated at the level of orders with the traditional phylog-
eny established mainly upon their morphological character-
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Fig. 4. A phylogenetic Tree based on primary structures of (fotypes
of globins including some representative Amniota embrycnic a-like
globins and Homo sapiens f-globin as an outer group. Branch
lengths are proporticnal to protein distances(x1/10) and shown on
the individual branches of the tree. The abscissa is a time scale in
Myr (million years) ago based on the separations of the o- and [3-
globin chains described by Goodman et al,, (1975). The references
of primary structures of globins used in the present analysis are as
follows: oP-globins: G. gigantea (this study), G. carbonaria (Acces-
sion No. AF304335 in GenBank), C. picta vellii (Richnagel et al.,
1984), S. punctatus (Abassi et al., 1998), R. americanus (Oberthir
et al, 1986), G. gullus (Takei et al., 1975), V. komodoensis (Fushi-
tani et al., 1996), L. miliaris (Matsuura et af.,, 1989). aA—g\obins: G.
giantea v-1 and o-2 (Shishikura and Takami, 2001), R. americanus
(Oberthir et al., 1983), G. gullus (Knéchel et al., 1982), H. sapiens
(Braunitzer et al, 1961). Embryonic o-like globins: H. sapiens ¢
(Aschauer et al, 1981), G. gullus © (Chapman et al., 1980; 1982),
H. sapiens B-globin (Braunitzer et al., 1961).

istics (Carroll, 1969; Benton, 1990). To date, there have
been four different types of a-globins in amniotes reported:
of, of, ' and . The former two are adult a-type globins
and the remaining are embryonic o-like globins. Fig. 4.
shows a molecular tree of reptilian evolution constructed
mainly by aD-globins of 7 reptiles as well as relatedness
among representatives of adult and embryonic a-type
globins. The tree also strongly supports the previous molec-
ular studies (Goodman et al, 1975; Fushitani et al., 1996;
Gorr et al.,, 1998; Shishikura and Takami, 2001), however, it
is reasonable to note the following two points: (1) the two
kinds of embryonic globins, n" and &, first split off from the
ancestor of the o-type of globins and formed a cluster; (2)
the ancestor of squamates (snakes; L. miliaris, lizards; Vara-
nus komodoensis) occupied unusual positions since oP-
globins of squamates began to diverge approximately 335
million years ago, much earlier than the separation of the
three other clusters of o-type globin families.
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Appendix. Sequence analysis of peptides obtained by cleavage with lysyl endopeptidase and V8 protease

Hb D -2 Hb DB Hb D a-2 HbD B
Step Amino Acid {p moles) Amino Acid {p moles) Step Amino Acid (p moles) Amino Acid (p moles)
Intact K-1 Intact K-1 Continued Continued
1 |M(254) |M(6160) V (687) |V (3918) 74 | D (1667) D (167) A (790)
2 |L(@97) |L(5178) H(272) | H (884) 75 | N (1990) N (59) V (397)
3 ([T(117) | T(2209) W (383) | W (104) 76 | L(2351) L (85) K (319) K-6
4 |E(291) |E (4423) T (265) | T (1340) 77 |5 (360) 5(13) N (3797)
5 |D(178) |D(2857) S(91) |5(322) 78 |A(2010) A (78) L (3545)
6 |D(229) |[D(3461) E (436) [E(1164) 79 | T(798) T(87) D (2082)
7 |K(232) [K(1208) |K-2 E (498) |E (1472) 80 |[L(1669) N (2410)
8 |Qu27) Q (2241) K (458) | K (354) |K-2 81 |5 (235) 1 (1914)
g |L(151) L (2614) Q(315) Q(2687) || 82 |E(1070) E-5 K (741)
10 |1(117) 1(2241) Y (247) Y (2053) || 83 [L(1085) L {896) K-7
11 [Q(111) Q(1782) 1 (294) 1 (2608) B4 |S(164) 5(145) T (1848)
12 [H(59) H (459) T (150) T (1210) 85 |N(702) N (535) F (3200)
13|V (122) V (2006) S (49) S (347) 86 |L(862) L (664) A (3206)
14 | W (56) W (1206) L (247) L(1855) || 87 |H(259) H (139) Q(2612)
15 | E (104) E (1360) E-1  |W(85) W (645) 88 |A(742) A (604) L (2743)
16 |K(101) |K-3 K (989) | K (542) |A (256) A(1722) || 89 |Y (477) Y (412) S (421)
17 |V (103) |V (1448) V(1039) |K(178) |K-3 K (787) 90 | N (582) N (504) E {1800)
18 |L(94) L (1357) L(800) |V (205) |V (2667) 91 |L(&15) L (364) L (1788)
19 | E (94) E (1219) E-2 E(295) |N(186) |N (2406) 92 | R (625) R (182) H (860)
20 |H(42) H (263) H (368) V (204) |V (2489) 93 |V (483) V (465) Clpe-cys
21 [Q(60) Q(870) |Q@871) G (145) | G (1667) 94 |D(N.D) D (293) E (1547)
22 |E(83) E (1075) |E (831) E (136) |E (2434) 95 |P(259) P (314) K (831) K-8
23 | D(88) D (532) V (338) |V (1899) 96 |V (254) V (359) L (559)
24 | F(68) F (814) G (140) |G (1323) 97 |N(218) N (291) H(174)
25 |G @7 G (535) G (163) |G (1354) 98 |F{(177) F (267) V (400)
26 A (730) E (386) |E(1726) 99 [K{17) |[K-7 K (372) D (315)
27 E (727) A (235) | A (1896) 100 L (4545) |L (284) P (280)
28 A (695) L(211) |L{1718) 101 L {4673) [L (423) E (519)
29 L (581) A(252) |A(1665) 102 S5(793) [S(43) N (258)
30 E (592) E-3 R{123) [R (840) 103 H (1551) [H(114) F (279)
31 R {(400) N.D. L (350) [L{1430) 104 C/pe-cys | Cipe-cys K-8 K (259)
32 M (435) M (785) |L(316) |L(1600) 105 F (2856) |F (196) L (2391)
33 F (389) F(7e1) |1(200) |1{1171) 108 Q(2258) (Q(174) L (1757)
34 1(337) 1(1879) |V (185) |V (1140) 107 V (2454) [V (181) G (674)
35 V(314) V(762) | Y (122) | Y (934) 108 Vv (2869) [V (217) N (790)
36 Y (265) Y (487) |P(104) |P(778) 109 L (2279) [L(155) | (425)
37 P (270) P (587) W (332) 110 G (1458) (G (117) L (247)
38 S (44) S (107) T (439) 11 A(2129) |A(153) 1(252)
30 T(134) T (295) Q (640) 112 H(656) |H (69) | (4186)
40 |K-4 K (58) K (803) R (412) 113 L{1708) |L (142) V (141)
41 T (4005) T (268) F (650) 114 G(1272) |G (114) L (174)
42 | Y (6603) Y (279) F (757) 15 R (1150) |R (97) A (185)
43 | F (7549) F (492) A (541) 116 E (1584) |E (52) E-6 T (128)
44 | P (4645) P (256) S (93) 117 Y (1098) Y (3742) | H (53)
45 | H (2838) H (109) F (413) 118 T (801) T(259) |F(127)
46 | F (5030) F (308) G (232) 119 P (974) P (286) | P (50)
47 | D (4682) D (256) N (334) 120 Q (956) Q(314) |K(34) K-10
48 | L (4563) L (218) L (291) 121 V (989) V (306) E (3554)
49 | H(2133) H (107) S (58) 122 Q (878) Q (249) F (3406)
50 |H(2659) H (142) S (63) 123 V (919) V (244) T (849)
51 | D(3410) D (167) A (254) 124 A (889) A (272) P (2086)
52 |5 (570) S (15) N (175) 125 Y (626) Y (200) A (2568)
53 |E (2847) E-4 E (68) A (225) 126 D (535) D (216) S (521)
54 |Q(2077) Q (336) 1 (136) 127 |K-8 K (387) K {318) Q (1504)
55 |1(2060) 1 (480) L (156) 128 |F (3085) F(212) A 1030)
56 |R(1581) N.D. H (65) 129 |L (2272) L (238) A (1885)
57 | H(947) N.D. N (119) 130 | A (2211} A (213) W (683)
58 |H{1391) H (95) A (137) 131 | A(2732) A(219) T (559)
59 |G (1365) G (108) K (42) K-4 132 |V (1917) V(202) |K-11 K (731)
60 | K (1344) K (228) V (3698) || 133 | S (273) S5(33) L(1518)
61 K-5 K {218) L (3684) [| 134 |A(1525) A(174) [V (1388)
62 V(7177) |V (296) A (3476) || 135 |V (1329) V(159) |N(11186)
63 V (6907) |V (170) H(1136)|| 136 |L{1186) L(189) |A (1411)
64 G (4722) |G (97) G (1916) || 137 |A(1268) A(151) |V (1157)
65 A(6187) |A(138) Q(2164)|| 138 |E (930) E(100) |A (1267)
66 L (5590) |L (200) K-5 K{1299) || 138 |K(740) |K-9 H (253)
67 G (3871) |G (135) V (1036) 140 Y (2427) A(1722)
68 D (3735) [D(120) L (1090) 141 R (620) L (787)
69 A (4395) |A (187) T (949) 142 A(1019)
70 V (3403) |V (169) S (182) 143 L (804)
71 |K-6 K (2660) |K (122) F (719) 144 | N.D.; not determined G (523)
72 |H(917) H (48) G (421) 145 Y (545)
73 1 {2647) |1 (74) E (1007) 146 H (41)
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Reptilian Hemoglobin: Globin Evolution of the Two Giant Tortoises,
Geochelone gigantea and Geochelone nigra

Fumio SHISHIKURA

Department of Biology, Nihon University School of Medicine

Amniota (reptiles, birds, and mammals), in general, have two or more hemoglobin components that are expressed
according to the demands of different physiological conditions. Among them, hemoglobin A (Hb A) and hemoglobin D
(Hb D) were detected in the extant giant tortoises (Geochelone gigantea and Geochelone nigra), and the latter was first
found in birds as a minor component of the embryonic and adult definitive erythrocytes. Using computer-assisted analy-
sis, a molecular tree was constructed on primary structures of 53 globins from Amniota including 38 reptilian &~ and non
a-globins, The divergence time between the two giant tortoises was estimated at 21-15 million years (myr) ago, which
represents a significant lapse following the break up of Gondwana (formed by Africa, South America, and the Atlantic
Ocean) at 65 myr ago. Hence, it is difficult to determine the place of origin of the two species. However, it is conceivable
that the two extant giant species had diversified less than 21-15 myr ago from a common ancestor and thereafter, reached
oceanic islands, one being volcanic (the Galapagos archipelagos) and the other being an atoll (the Aldabra atoll), by
rafting, this is the most reliable mode of migration for terrestrial animals.

Key words: hemoglobin, Amniota, reptile, giant tortoise, molecular evolution
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Fig. 1 Lonesome George, the last of a dying race. Lonesome
George is the most famous giant tortoise of the Charles
Darwin Research Station at Puerto Ayora, Santa Cruz. The
wooden information tells us a story of Loncsome George
discovered in 1971.
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Fig.2 The geologic and geographic distribution of land tortoises
known as living species*®*”. Open allows indicate the
habitat of Geochelone gigantea (the larger one) and that of
Geochelone nigra (the smaller one), respectively. The
habitats of the two giant tortoises are remote and isolated.
After the permission of the publisher, Nakayama Shoten
Co., Lid.
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Fig.3 Separation and purification of the G. gigantea globin-
chains™®. Panel A: Separation of Hb A and Hb D from G.
gigantea red blood cells on an Alkyl Superose HR5/5 col-
umn. Panels B and C: Separation of globin-chains from re-
duced and S-pyridylethylated Hb A (Panel B: about 2 mg
globin) and Hb D (Panel C: about 2 mg globin) on a Re-
source column. Major peaks are designated as o1, o2, o
3 and J3, respectively.
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The Galapagos Giant Tortoise
G. nigra o?-1 ~VLTAGDRKANVE TVWSKVGSHLEEYGSETLERLFIVYPSTKTYFPHFDLHE-—————— DSAQVRAHGRRKVL
G. nigra o’-2 -MLTEDDKQLIQHVWE TVLEHQEDFGAEALERMFTVYPSTKTYFPHFDLHH === ——— GSEQIRHHGKKVV

G. nigra §

The Aldabra Giant Tortoise
G. gigantea of-1
G. gigantea «a°-2

G. gigantea f§
* * * *

VHWTPEEEQYITSLWAKVN--VEEVGGEALARLLIVYPWTQRFFSSFGNLSSASATLHNAKVLAHGKKVL

-VLTAGDKANVKTVWSKVGSHLEEYGSE TLERLFVVYPSTKTYFPHFDLHH—————— DSPQVRAHGKKVL
-MLTEDDKQLIQHVWEKVLEHQEDFGAEALERMFIVYPSTKTYFPHFDLHH—————— DSEQIRHHGKKVV

VHWTSEEKQYITSLWAKVN——VGEVGGEALARLLIVYPWTQRFFASFGNLSSANAILHNAKVLAHGQKVL
* ok ok ok

R * *k kk

SALGEAVNHIDDIPGALSKLSDLHAQTLRVDPVNFKLLNLCFVVVVGRHHPTILTPEVHVSLDKFLSAVATALTSKYR
GALGDAVRHIDDLSATLSELSNLHAYNLRVDPVNFKLLSHCFQVVLGAHLGREYTPQVQVAYDKFLAAVSAVLAEKYR
TSFGDAVRNLDNIKKTFAQLSELHCEKLHVDPENFRKLLGNILIIVLATRFPKEFTPASQAAWTKLVNAVAHALALGYH

SAL.GEAVNHIDDIPGALSKLSDLHAQNLRVDPVNFKLLNLCFVVVSGTHHPTILTPEVHVSLDKFLSAVATALTSKYR
GALGDAVKHIDNLSATLSELSNLHAYNLRVDPVNFKLLSHCFOVVLGAHLGREYTPQVQVAYDKFLAAVSAVLAEKYR
TSFGEAVKNLDNIKKTFAQLSELHCEKLHVDPENFKLLGNILIIVLATHFPKEFTPASQAAWTKLVNAVAHALALGYH

* k% * *%k k% * kkk KKKk KK

* %k * * % * *

Fig. 4 An alignment of primary structures of three kinds of globins (o, &, and 8) from the two giant
tortoises™¥. Asterisks indicate the invariant amino acid residues. Dashed lines are gaps automati-
cally inserted to maximize the sequence alignment,
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G. gigantea oP-2
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Fig. 5 The phylogenetic tree of 38 reptilian globins and the other
representative Amniota globins. Branch lengths are pro-
portional to protein distances and shown on the individual
branches of the tree. The abscissa is a time scale in Myr
(million years) ago based on the separations of the o- and
[-globin described by Goodman et al®®. The references of
primary structures of globins used in the present analysis
are as follows: a’-globins: A. mississippiensis®™, C.
niloticus™, C. crocodylus®™ ™, C. picta bellii*®, G. giantea
o-1" and @-27, G. nigra o*-1 (Accession Nos. P§3131,
P83132 and P83 135 of Swiss-Prot Data Bank), G. gullus™",
R. americanus™, §. punctatus*®?, C. caretta®®, H. sapi-
ens™ I iguana®®, V. exanthematicus™", V. komodoen-
5is*D, M. gracili™, N. naja naja’, V. aspis*®. oP-globins:
G. gullus™, C. picta vellii®™®, G. gigantea o-2%, G. nigra
o-2% (Accession No. P83124 of Swiss-Prot Data Bank),
G. carbonaria (Accession No. AF304335 of GeneBank),
P. hilari®®, 8. punctatus*?, L. miliaris’®, V. komodoen-
sis*V. a-like embryonic globins: G gallus &', H. sapiens
£ Homo sapiens 6. Non oa-globin: A. mississippiensis
B C. niloticus B%, C. crocodylus B, C. picta bellii
B, G. gigantea B, G. nigra B (Accession No. P83123 of
Swiss-Prot Data Bank), G. carbonaria B2, G. gallus ¥,
G. gallus p*V, G. gallus B3, R. americanus B, §.
punctatus B-117, 1 iguana B%, V. exanthematicus B°°, M.
gracilis B™ N. naja naja B, L. miliaris B>, S. punctatus
B-1'D, H. sapiens 8%, H. sapiens B*), H. sapiens £*, H.
sapiens *y*, C. caretta §.
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Table 1 Comparison of exson and intron sizes (in bp) among representative
amniotes (reptiles, birds and mammals)-globin genes

Class Globin-gene Name  Exon-1 IstIntron  Exon-2 2nd Intron  Exon-3 Ref.
Reptilia  G. gigantea o-2 92 74 205 340V 126 unpub.
G. gigantea oP-2 92 214 205 227 126 8
Aves Gallus gallus o 92 148 205 261 126 87
Gallus gallus #' 92 577 205 294 126 88
Gallus gallus o 92 131 205 109 126 87
Mammalia Homo sapiens § 92 886 205 239 126 89
Homo sapiens o 92 117 205 141 126 90
Reptilia G. gigantea [ 89 1309 223 1590" 126 8
Aves Gallus gallus 89 92 223 810 126 91
Gallus gallus p 92 108 223 541 126 92
Gallus gallus € 92 108 223 973 126 80
Mammalia Homo sapiens € 92 122 223 854 126 85
Homo sapiens My 92 122 223 885 126 86
Homo sapiens & 89 128 223 886 126 93
Homo sapiens [ 89 130 223 850 126 34

" Intron sizes were estimated by migration distances of PCR-amplified fragments on agarose gel electro-

phoresis (Fig. 6).
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Table 2-A Nucleotide sequences of three exons and exon-intron boundaries of Geochelone gigantea o*-2-globin gene

YA AN Ty OSTHEY

Exon-1 I | GTG CTA ACA GCA GGC GAC AAG GCC AAC GTG AAG ACC GIG TGG AGC
46 | AAG GTG GGC AGC CAC CTG GAG GAC TAT GGC TCC GAG ACC CTG GAG
91 | AG
Intron-1 I | gta aca gecc  get  geg  cce tge cee gee tge gcc  cgg  cca  ggc ccc
46 | cgc tta acc cge it gtt ctt tge ag
Exon-2 1 G CTG TIC GTC GTC TAC CCC TCC ACC AAG ACC TAC TIC CCC CAC
44 | TTC GAC CTG CAC CAC GAC TCC CCC CAG GTC CGG GCC CAC GGC AAG
82 | AAG GTG CTG AGC GCC CTG GGG GAA GCC GTG AAC CAC ATC GAT GAC
134 | ATC CCC GGG GCT CTC AGC AAA CTG AGC GAC CTG CAC GCC CAQ AAC
179 | CTG CGC GTG GAT CCC GTC AAC TTC AAA
Intron-2 1 | gtg agt gac cgg cag aaa tge tee cte cgg  gte cga gee  cge tgc
(approximately 250 nucleoitdes not shown)
gca gee get tcc cag ctt ttc tca ctc geg cge ctt gtc ttc cag
Exon-3 1| CTG CTG AAC CTG TGC TTC GTG GTG GTC GTG GGC CGC CAC CAC CcCC
46 | ACC ATC CTC ACC CCC GAG GTC CAC GTG TCC CTG GAC AAG TTC CTG
91 | AGC GCT GTG GCC ACC GCG CTS ACT AGT AAG TAC CGG
Table 2-B  Nucleotide sequences of three exons and exon-intron boundaries of Geochelone gigantea oP-2-globin gene®
Exon-1 1| ATG CTA ACA GAG GAC GAC AAG CAG CTG ATC CAA CAT GTG TGG GAG
46 | AAG GTG CTG GAG CAC CAG GAG GAC TIT GGG GCC GAG GCC CTG GAG
91 | AG
Intron-1 1| gta ggg ccc  ggg gea  ggc ggc ccg ggc gea ggg  tge agg gag  gaa
46 | (46—168 not shown)
tgg geg act teg gga ttc act gtc tet gac  ctc cct cce ccg  cag
Exon-2 1 G ATG TTC ATC GTC TAC CCC TCC ACC AAG ACC TAC TTC CCC CAC
44 | TTC GAC CTG CAT CAT GAC TCG GAA CAG - ATC CGC CAC CAC GGC AAG
8 | AAG GTG GTG GGC GCC CTG GGG GAC GCC GTG AAG CAC ATC GAC AAC
134 | CTC AGC GCG ACG CTC TCC GAG CTC AGC AAC CTG CAC GCC TAC AAC
179 | TTG CGC GTG GAC CCG GTC AAC TTC AAG
Intron-2 I | gc'a agt gea  gge  lac gge  cag  gaa gag ttc ccg ggg  ggt  geg  gga
(46181 not shown)
182 | ggc  cga ggg ctg  gct gce get  gac cca gtg cac it gct ttg cag
Exon-3 1| CTG CTG TCC CAC TGC TIC CAG GTG GTG CTG GGC GCG CAC TTG GGC
46 | CGC GAG TAC ACC CCG CAG GTG CAA GTC GCC TAT GAC AAG TTC CTG
91 | GCC GCC GTC TCG GCG GTG CTG GCT GAG AAG TAC CGG

Table 2-C Nucleotide sequences of three exons and exon-intron boundaries of Geochelone gigantea B-globin gene®

Exon-1 1| GTG CAC TGG ACC AGC GAG GAG AAG CAG TWC ATT ACC AGT CTIG TGG
46 | GMC AAG GTC AAC GTG GRG GAA GTG GGT GGC GAA GCC CTG GCC AG
Intron-1 1 | gta gge  teg agc  clc aca tgg ata tct gee tcg  cat tge tece tct
(approximately 40 nucleotides not shown)
gca gta acc cig gt clg tct ctg ctc ctg tct cce tct ctc tag
Exon-2 1 G CTG CTG ATC GTC TAC CCC TGG ACC CAG AGG TIT TIC KCT TCC
44 | TTIT GGG AAC CTS TCC AGC SCC AAC GCC ATC MTG SRC AAC GCC AAG
89 | GTG STT GCC CAT GGC MAG AAA GTG CTG ACC TCS TIT GGG GAA GCT
134 | GTG AAG AAC CTG GAC AAC ATC AAG RMM ACG TWC GCC CAG CTG AGC
179 | GAG CTG CAC TGC SAR AAG CTG CAT GTG GAT CCT GAG AAC TIC AAG
Intron-2 1| gtg agt ccg gct  ctg ggt tga  ccc tct tce cag ccc  cct e cat
(approximately 1590 nucleotides not shown)
cag  agc ggt get  gac cca geg  ggt  atc ttc tic ctt cte ctc  cag
Exon-3 1| CTC CTG GGC AAT ATC CTC ATC ATC GTC CTG GCC ACC CAC TTC CCA
46 | AAG GAG TTC ACT CCT GCC AGT CAG GCC GCC TGG ACA AAG CTC GTC
91 | AAT GCA GTG GCC CAT GCT CTG GCT CTC GGT TAC CAC

The International Union of Pure and Applied Chemistry Symbols used to denote multiple nucleotides are as follwos: M=A or C,
R=A orG,5=GorC,W=AorT.
1) An abnormal gc dinucleotide instead of the invariant gt at the 5" end of the second intron sedquence.
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Table 3 Oligo-nucleotide primers used for the amplifiication of Geochelone gigantea globin-genes®
Gene  Primer Name (Type) Nucleotide sequences Reference Degeneracy

I 10 20 (fold)

Hb o*-2 MI3F-1 (Ferward) MI3-GTGCTRACNGCNGGNGAYAAGGC N-terminal 256
MI3F-2 (Forward) MI3-AARACNTAYTTYCCNCAYTTYGA 40-47 512

MI3R-1 (Reverse) MI3-YCGGTACTTNSWRGTBAGVGC C-terminal 576

Hb @"-2 MI3F-3 (Forward) MIB-ATGYTNACNGARGAYGAYAARCA N-terminal 512
MI13R-2 (Reverse) M13- AAYTTRTCRTANGCNACYTGNAC C-terminal 1024

Hb M13F-4 (Forward) MI3- GTGCACTGGACYWSNGARGAGAAG N-terminal 64
MI3R-3 (Reverse) MI3-CTTGAAGTTCTCRGGRTCCACRTG 104-97 8

MI3F-5 (Forward) MI3-CAYGTGGAYCCYGAGAACTTCAAG 97-104 8

MI13R-4 (Reverse) MI3-GTGGTAVCCSAGRGCCAGRGCRTG C-terminal 48

M13 forward sequence: 5-TGT AAA ACG ACG GCC AGT-3', M13 reverse sequence: 5'-CAG GAA ACA GCT ATG ACC-3'
The International Union of Pure and Applied Chemistry Symbols used to denote multiple nucleotides are as follows: B =C, G or
Trnot A; N=A, G, CorT;R=AorG;S=CorG;V=A,GorCnotT; W=AorT;Y=CorT.

bp
4870

2016
1360
926
658
489

hani

1 2 M2

M1

M1

3 M2

4 M2 5 Ml

Fig. 6 Agarose gel electrophoreses of PCR products amplified from G. gigantea genomic DNA using de-
generate primers (see Table 3)¥. Lane [; an 834-bp fragment amplified with M13F-1 and M13R-1,

Lanes 2; a 645-bp fragment amplified with

MI13F-2 and M13R-1, Lane 3; a 870-bp fragment ampli-

fied with M13F-3 and M13R-2, Lane 4; a 480-bp fragment amplified with M13F-4 and M13R-3,

Lane 5; a 1.75-kbp fragment amplified wit

h M13F-5 and M13R-4, Lanes M1 and M2; DNA molec-

ular standard markers, 100-bp DNA Ladder (M 1) and pHY Marker (M2).
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Fig. 7 The breakup of land mass, Gondwana*>'™. A: At the end
of the Triassic period (180 myr ago), the southern group,
known as Gondwana, has begun to isolate the Africa-South
America land mass from Antarctica-Australia. B: At the
end of the Jurassic period (135 myr ago), the North Atlantic
and the Indian Ocean have opened considerably. A rift has
initiated the birth of the South Atlantic. C: At the end of
the Cretaceous period (65 myr ago), the South Atlantic has
widened into a major ocean. A new rift has carved Mada-
gascar away from Africa. After the permission of the pub-
lisher, Nakayama Shoten Co., Ltd.
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Leech hemoglobin: primary structures of four kinds of globins
from Haemadipsa zeylanica var. japonica
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1. Introduction

The extracellular hemoglobin of the land leech Haema-
dipsa zeylanica var. japonica is basically composed of three
constituent subunits, a dimer (D1-globin and D2-globin)
and two monomers (M1-globin and M2-globin) (Shishikura
et al., 1997). They were separated into two distinct groups,
A and B, originally proposed by Gotoh et al. (1987) for the
multisubunit globins of annelids. Our previous report on the
amino (N)-terminal amino acid sequences of the leech
globins has shown that D1-globin and M1-globin belong to
group A, and D2-globin and M2-globin to group B
(Shishikura et al., 1997).

As for the complete primary structure of hemoglobin of
annelids, many of studies have been performed on
oligochaetes and polychaetes. However, to date, there are
few studies on leech hemoglobin. To establish the primary
structures of the leech globins is therefore required, and their
structures should be useful in clarifying the molecular
evolution of hemoglobin in annelids and other invertebrates,
as well as in vertebrates. Here the author reports
the complete primary structures of the four globins from
the land leech H. zeylanica by nucleotide and peptide
sequencing.

2. Materials and methods

2.1. Preparation of four kinds of globins
and globin-chain separation

Globins of H. zeylanica were prepared by the method
described previously (Shishikura et al., 1997). One dimer
subunit and two monomer subunits were separated by
gel-filtration on a Superdex 75 column. To separate the D1-
globin and D2-globin from the dimer, the disulfide-bonds of

* Fax: +81-2-3972-0027.
E-mail address: fshishi@med.nihon-u.ac.jp (F. Shishikura).

0968-4328/$ - see front matter © 2003 Elsevier Ltd. All rights reserved.
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the dimer subunit were cleaved by reduction and
S-pyridylethylation (Friedman et al., 1970), followed
by isolation of each globin-chain on a Resource RPC
column.

2.2. Protein sequencing

All four globin-molecules modified by S-pyridyl-
ethylation were digested, separately, with Lysyl endopepti-
dase (Wako Pure Chemicals Co., Tokyo). Peptide fragments
derived from each of the parent molecules were separated
using a reversed-phase column, Resource. Sequence
analyses of these fragments were performed using a gas
phase protein sequencer, PPSQ-10 (Shimadzu Co., Kyoto),
equipped with a class LC-10 amino acid analyser.
Phenylthiohydantoin (PTH)-derivatives from the sequencer
were separated and quantified. The peptides were then
aligned with the assistance of sequence similarities of
known globin structures of annelids.

2.3. Nucleotide sequencing

Total RNA from H. zeylanica was extracted from the
whole body by acid guanidium thiocyanate—phenol—
chloroform method (Chomczynski and Sacchi, 1987), and
mRNAs including the four kinds of globins were isolated
with a TaKaRa Oligotex™-dT30 <Super > mRNA
Purification Kit (TaKaRa Bio Inc., Shiga). The single-
stranded cDNAs were synthesized with a TaKaRa RNA
PCR Kit (v. 2.1) using the Oligo dT-Adaptor Primer (M13
primer M4, 17-mer).

For PCR amplification of the 3’ region of the cDNA, the
primers used were the adaptor and a redundant oligomer
based on N-terminal amino acid sequence of each globin.
The second PCR-amplification was conducted with a nested
PCR primer (redundant oligomer) and the adaptor. One
major fragment was detected on agarose-gel electrophore-
sis. Then, the fragment was purified and sequenced directly
with a BigDye Terminator v1.1 Cycle Sequencing Kit
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Fig. 1. Alignment of primary structures of the four globins from H. zeylanica hemoglobin. Accession numbers of gene banks ((DDBJ/EMBL/Genebank) are: M1-
globin, AB119122; M2-globin, AB119123; D1-globin, AB119124; D2-globin, AB119125. * indicates positions which have a single, fully conserved residue.

(Applied Biosystems, Foster City, CA). The rest of the 3
end was afterwards confirmed by 3'RACE with the adaptor
and a gene-specific primer. All the forward and reverse
primers, except for the Oligo dT, were tagged with
pUC/M13 sequencing forward 17-mer (Sigma-Aldrich
Japan, Tokyo) and reverse 17-mer (Promega, Tokyo),
respectively.

For PCR amplification of the 5’ region of the cDNA,
gene-specific primers with or without 5'mophosphate were
designed in order to extend the sequence in the 5’ end using
a TaKaRa 5'-Full RACE Core Set (Maruyama et al., 1995).

2.4. Computer analysis

A multiple alignment program, Clustal X (Jeanmougin
and Thompson, 1998), was used in the alignment of the four
H. zeylanica globin chains, including those of representative
oligochaete and polychaete species. A phylogenetic tree was
also constructed by neighbor-joining method stored in the
program.

3. Results and discussion

Two sequencing methods, protein and nucleotide sequen-
cing, provided sufficient information to establish the
complete primary structures of the four H. zeylanica globins.
Fig. 1 shows the complete primary structures of these four
globin chains, whose sequences are reinforced by the
different method (nucleotide sequences are not shown
here). The mature globin-molecules are composed of 146
amino acid residues for M 1-globin, 156 for M2-globin, 143
for D1-globin, and 149 for D2-globin. There are 22 invariant
amino acids in the alignment. It is noticeable that the amino
acid replacements occur at positions 57 (phenylalanine to
leucine in D2-globin), 73 (histidine to phenylalanine in
D1-globin), 88 (leucine to phenylalanine in D2-globin), and
139 (alanine to serine in M1-globin), as shown in Fig. 1.
When compared sequence similarities among the four
globins, 26—33% identities are found.

Fig. 2 shows a phylogenetic tree based on globin primary
structures of Hirudinea, Oligochaeta, and Polychaeta. Three
clusters can be seen: strain A, strain B, and others including
M2-globin (B type globin) and Lumbricus 111 globin (B type
globin). The present tree strongly indicates that M2-globin
is a type of ancestral globins in annelids.

In conclusion, this study has provided the primary
structures of the four globins from the land leech
H. zeylanica, thereby allowing the construction of a
comparative molecular phylogenetic tree of the globins of

0.05 0.323 .
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0.270
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0.273
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i H dipsa D1
660
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Fig. 2. Phylogenetic tree, based on globin-primary structures of
representative species of Annelida, constructed from 1000 bootstrap
replications by the neighbor-joining method. Primary structures of
Tylorrhynchus 1, 1IA, 1IB, and IIC were quoted from Suzuki and Gotoh
(1986). Primary structures of Lumbricus I and the other three globins of
Lumbricus (11, 1II, and IV) were taken from Shishikura et al. (1987) and
Fushitani et al. (1988), respectively.
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representative species belonging to three orders of Annne-
lida (Hirudinea, Oligochaeta, and Polychaeta). From the
structure of the land leech globins, Hirudinea have ancestral
characteristics among annelids.
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Abstract

The amino acid sequences of four globins from the land leech, Haemadipsa zeylanica var. japonica, were determined
using nucleotide sequencing and protein sequencing. The mature globin-molecules were composed of 146 amino acid
residues for M-1 globin, 156 for M-2 globin, 143 for D-1 globin, and 149 for D-2 globin. Alignment of the four kinds
of globins by Clustal X revealed 22 invariant amino acids. The four globins were 26-33% identical. A striking feature
of amino acid alteration was: the replacement of the E7 distal-His of D-1 globin by phenylalanine because histidine is
conserved among the rest of the globins of H. zeylanica, those of other representative species (Lumbricus and
Tylorrhynchus) of Annelida and most other hemoglobins. A phylogenetic tree constructed of 18 globin structures
including two species of leeches, H. zeylanica (a land leech) and Macrobdella decora (a freshwater leech), T.
heterochaetus (a representative species of polychaetes), L. terrestris (a representative species of oligochaetes), and
human « and 3 globins strongly indicated that the leech globins first separated from globin lineage of annelids.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Annelida; c-DNA; Evolution; Globin; Haemadipsa zeylanica; Nucleotide sequence; Primary structure; RACE

1. Introduction

Although leeches occur in habitats ranging from
aquatic (both freshwater and marine) to terrestrial
ecosystems and are found on all continents, the
systematics of leeches is poorly understood (Mann,
1962; Apakupakul et al., 1999). The jawed Japa-
nese land leech (Haemadipsa zeylanica var. japon-
ica) is known to have a sanguivorous habit and
belongs to the Hirudiniformes, which includes the
medicinal leech family Hirudinidae and the terres-
trial Haemadipsidae. Recently, the salivary com-
ponents of sanguivorous leeches have been
investigated for pharmaceutical and clinical uses

*Corresponding author. Tel.: +81-3-3972-8111x2291; fax:
+81-3-3972-0027.
E-mail address: fshishi@med.nihon-u.ac.jp (F Shishikura).

in the prevention of blood clot formation (Wals-
mann and Markwardt, 1985; Lent, 1986).

The extracellular hemoglobin of the land leech,
H. zeylanica var. japonica, is basically composed
of three constituent subunits, a dimer (D-1 and D-
2 globins) and two monomers (M-1 and M-2
globins) (Shishikura et al., 1997). The multiple
subunit globins of the annelids were separated into
two distinct groups, strain A and strain B (Gotoh
et al., 1987). Our previous report on the first 30
amino (N)-terminal amino acid sequences of the
leech globins showed that D-1 globin and M-1
globin belong to strain A, and D-2 and M-2 globins
belong to strain B (Shishikura et al., 1997).

Many studies of the primary structure of hemo-
globin of the annelids have been performed in
oligochaetes and polychaetes; however, to date,

1096-4959/04/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
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few studies on leech hemoglobin have been report-
ed (Kapp et al., 1990; Shishikura et al., 1997).
Determination of the primary structures of leech
globins, therefore, is required, and their structures
may be useful tools for clarifying the molecular
evolution of the globin super-families of annelids
in particular as well as invertebrates and verte-
brates in general.

Here I report the complete primary structures of
the four kinds of globins from the land leech, H.
zeylanica, by nucleotide sequencing and peptide
sequencing. A phylogenetic tree based on globin
structures strongly indicates that the globins of
Hirudinea first diverged from the lineage of globins
of Annelida.

2. Material and methods

2.1. Preparation of four globins and globin chain
separation

Globins of H. zeylanica were prepared by the
method described previously (Shishikura et al.,
1997). The one dimer subunit and two monomer
subunits were separated by gel-filtration on a
Superdex 75 column. To separate D-1 globin and
D-2 globin, the disulfide-bonds of the dimer
subunit were irreversibly cleaved by reduction and
S-pyridylethylation (Friedman et al., 1970), fol-
lowed by isolation of each globin chain on a
Resource RPC column (Amersham Biosciences,
Tokyo). Globin chains were ascertained in accor-
dance with previously determined N-terminal ami-
no acid sequences of the four kinds of globins
(Shishikura et al., 1997).

2.2. Protein sequencing

All four kinds of globin molecules modified by
reduction and S-pyridylethylation were separately
digested with Lysyl endopeptidase (Wako Pure
Chemicals, Tokyo) at an enzyme/substrate ratio
of 1/30 (mol/mol) for 4 h at 37 °C in 0.1 M
ammonium bicarbonate (pH 8.2). Peptide frag-
ments derived from each of the parent molecules
were separated using a reversed-phase column
(Resource RPC) in a 0.1% trifluoroacetic acid
(TFA) buffered gradient to 60% acetonitrile in
0.08% TFA. Flow rates were maintained at 0.3
ml/min. All fractions were monitored at 214 and
280 nm. Re-chromatography of selected peptides
was conducted as previously described (Shishikura

et al., 1987). Sequence analyses of these fragments
were performed using a gas phase protein sequenc-
er, PPSQ-10 (Shimadzu, Kyoto, Japan), equipped
with a class LC-10 amino acid analyser. Phenyl-
thiohydantoin ~ (PTH)-derivatives  from the
sequencer were separated and quantified. The pep-
tides then were aligned with the assistance of
sequence similarities toward the known globin
structures of annelids.

2.3. Nucleotide sequencing

Total RNA from H. zeylanica was extracted
from three adults (approx. 500 mg in total mass;
two to three individuals) by the acid guanidium
thiocyanate—phenol—chloroform method (Chom-
czynski and Sacchi, 1987), and mRNAs (approx.
450 ng in total) including the four kinds of globin
mRNAs were isolated with a Takara Oligotex ™ -
dT30 {Super) mRNA Purification Kit (Takara Bio,
Shiga, Japan). The single-stranded cDNAs were
synthesized with a Takara RNA PCR Kit (v. 2.1)
using the Oligo dT-Adaptor Primer (M13 primer
M4, 17-mer: 5'-GTTTCCCAGTCACGACT,s-3),
according to the manufacturer’s instructions.

For PCR amplification of the 3’ region of the
cDNA, the primers used were the adaptor and a
redundant oligomer based on the N-terminal amino
acid sequence of each globin (see Appendix 2-A).
The second PCR-amplification was conducted with
a nested PCR primer (a redundant oligomer) and
the adaptor (Appendix 2-B). One major fragment
was detected on agarose—gel electrophoresis in
each PCR. Then, the fragment was purified by a
GenElute™ Agarose Spin Column (Sigma-Aldrich,
St. Louis, MO, USA), and sequenced directly with
a BigDye Terminator v1.1 Cycle Sequencing Kit
(Applied Biosystems, Foster City, CA, USA). The
rest of the unknown sequence of the 3’ end was
afterwards confirmed by 3’'RACE (Frohman et al.,
1988), with the adaptor and a gene-specific primer
(Appendix 2-C).

For PCR amplification of the 5’ region of
cDNAs, gene-specific primers with or without 5
monophosphate as listed in Appendix 2-D were
designed in order to extend the sequences in the
5" ends using a Takara 5'-Full RACE Core Set
(Maruyama et al., 1995), according to the manu-
facturer’s instructions. All forward and reverse
primers, except for the oligo dT, listed in Appendix
2, were tagged with pUC/M13 sequencing primers
(forward 17-mer: 5'-GTAAAACGACGGCCAGT-
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3', Sigma-Aldrich Japan, Tokyo, and reverse 17-
mer: 5'-CAGGAAACAGCTATGAC-3’, Promega,
Tokyo).

2.4. Computer analysis

A multiple alignment program, Clustal X (Jean-
mougin and Thompson, 1998) as well as Clustal
W (Thompson et al., 1994), was used to align the
four kinds of leech globins, with those of repre-
sentative species from oligochaetes and poly-
chaetes. Pairwise distances among 18 globin
sequences were calculated using the computer
program Protdist under the Dayhoff PAM matrix
option of the PHYLIP package (Felsenstein,
1993). A phylogenetic tree was constructed by the
neighbor-joining method (Saitou and Nei, 1987),
and the tree was drawn by the NJ-prot program.

3. Results and discussion

Fig. 1 shows four chromatograms of separation
of peptide fragments generated from the parent
molecules, M-1 globin, M-2 globin, D-1 globin,
and D-2 globin. Fragments were selected and
sequenced completely except for k-4 of D-1 globin
and k-6 of D-2 globin. As summarized in Appen-
dix 1, the k-peptides from the four kinds of globins
were aligned with the assistance of sequence sim-
ilarities towards known sequences of globins of
annelids stored in the SwissProt data bank (http:/
/us.expacy.org/cgi-bin/).

Using primers listed in Appendix 2, cDNA-
fragments amplified by PCR, whose major bands
were extracted from the agarose gels and
sequenced, are shown in Fig. 2. Results of nucle-
otide sequencing of 12 cDNA-fragments provided
enough information to determine complete cDNA
sequences. Entire coding regions of the four kinds
of H. zeylanica globins have been stored in
GenBank/DDBJ/EMBL (accession nos.
AB119122 for M-1 globin, AB119123 for M-2
globin, AB119124 for D-1 globin, and AB119125
for D-2 globin). The nucleotide sequences of
mature proteins, as shown in Appendix 1, are
comprised of 146 amino acid residues for M-1
globin, 156 for M-2 globin, 143 for D-1 globin,
and 149 for D-2 globin. The amino acid sequences
deduced from the nucleotide sequences were iden-
tical with those determined by protein analyses
described above. Their sequences reinforce each
other. In addition, protein analyses demonstrated

0.2AU

0.2AU

0.2AU

0 30 50 80 min

Fig. 1. Separation profiles of peptide fragments by reversed-
phase column chromatography in FPLC. (A) M-1 globin, (B)
M-2 globin, (C) D-1 globin, (D) D-2 globin. After digestion
of the parent molecules (approx. 200 wg) with lysyl endopep-
tidase, each sample was applied to a Resource RPC column (3
ml packed with Source 15 RPC). All peaks with numbers were
sequenced, and their amino acid sequences are shown in
Appendix 1.

two kinds of k-peptides (asterisks in Fig. 1), in
each of which a micro heterogeneity of amino
acids was detected, while by nucleotide analyses
no trace of nucleotides indicating micro heteroge-
neity was found.

Fig. 3 shows an alignment of the four globins,
in which there are 22 invariant amino acids (aster-
isks). Among them, 11 amino acids are common
(dots) when compared with Lumbricus globins
and Tylorrhynchus globins (sequences not shown).
When they were aligned with human (3 globin,
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A B C-1 C-2

bp

4870

bp 2016
1500

1360

1000 026

658

500 489

S1 M1 M2 D1 D2 S2 S1 M1 M2 D1 D2 S2 S1 M2 S2 S1 M1D1D28S2

Fig. 2. Agarose gel electrophoreses (1.5% gels) of the PCR products amplified from four kinds of cDNAs using primers as listed in
Appendix 2. (A) Nested PCR, (B) 3'-RACE, (C-1) 1st PCR of 5-RACE, (C-2) 2nd PCR of 5-RACE. The major fragment in each
lane, except for the S1 and S2 lanes, was extracted from the gel and sequenced. PCR conditions: 30 cycles each consisting of 30 s at

94 °C for denaturation, 30 s at 50 °C for annealing, and 1 min at 72 °C for primer extension. S1 (100 bp ladder) and S2 (pHY) are
DNA markers.

Residue No. 1 . . s7 .
M e DPHQCGLLEKFKFYKQWTEVFGLGEQ--RIEFGLKVFAKLFHDHPDARKLF SNV
M2 DVHVEDHDELCSGGDGNIVVEDWNQLWEGSDSSFRIAFAKEVLLEVVNAHPEAKELFHAV
pr eeeeee- THVCPELSAIKVQTQWREAYADSSD--RVALAQAVYRTLFKMAPESANLFHRV
Dz eeeeee- DYHCSIEDIRDIQHDWQF TWGDASLDARIVFGQAVFKKLIELDSSVVEP LKGV
* * * * *
Helix Position NA1 A1 81 a 01 01
Human B ------- VHLTPE-EKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPD
o o

Residue No. 73 . . 88 . . .
M1 NGENIYSHEFKAHVKRVLSSLDLNAILLSRNDLLEDQLAHLKGQHDSR-GVDWSYVQAFK
M2 NIEDPNSGEFEAHSLRIINTFDLLVNLLQDRHALHEASLHLGHQHAARPGVVAKYFKTFG
D1 NSEEPDSAEFIAFSLRVLNGLDVVITLLDQEKALFAQIEHLHSQHIER-HIPPKYASAFV
D2 HVEDPNSLTFKNHVLRVLNGLDNLINL FDEQGVLVSQLNHLSQQHKERAGVNAAHFKAFA

* * * * * * * ok *k * *
Helix Position E1 EF1 F1 FG1 Gl
Human B AVMG--NPKVKAHGKKVLGAFSDGLAHLDN- - -LKGTFATLSELHCDKLHVDPENFRLLG

o o o
Residue No. 139, . .
M1 QAMLEVLPEYLGVFVC---YE SWDGCLEHILTGIFKGH-~
M2 QELIKAL-AHLIDDFH---FIAWKGCFKTLTKEIVGSIPE
D1 EALHHVLPSVIGHCYD---EHAWSQCLNSIAKKILS-~--
D2 RAFIDVL-EVSGNCPN---LDAWKGCLAALGHRISLQLKK
* * * *
Helix Position G H1 HC1
Human B NVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH-
o

Fig. 3. Alignment of the amino acid sequences of the four kinds of globins from H. zeylanica. The 22 amino acid residues conserved
in the four kinds of globins are shown by asterisks. Residue No. is an arbitrary residue number with the numbering beginning from

the N-terminal of the globins with the longest N-terminal extension. ‘Helix position’ refers to the helix position in human 3 globin
(Nagel, 1995).
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only six amino acids were invariant (shown by
open circles): Al12-Trp, B16-Val, EF5-Leu, F4-
Leu, F8-His and G16-Leu.

Four amino acid substitutions, underlined in Fig.
3, are noticeable because they occurred in only
one of the four kinds of globin-chains of H.
zeylanica compared with Lumbricus globins and
Tylorrhynchus globins: a Leu at position 57 of the
D-2 globin, a Phe at position 73 of the D-1 globin,
a Phe at position 88 of the D-2 globin, and a Ser
at position 139 of the M-1 globin. Among them,
the alteration of the Phe at position 73 of the D-1
globin is, in particular, noteworthy because the
corresponding His at helix position E7 (E7-His),
known as the distal His, is conserved widely in
vertebrates and invertebrates. Phillips and Schoen-
born (1981) reported that the function of substitute
residues (E7-Gln or E7-Leu) are not clear,
although they do present steric hindrance to linear
ligands, such as carbon monoxide, and favor ‘bent’
ones, such as O,. Nagai et al. (1987) produced a
mutant human hemoglobin with E7-GIn, Val or
Gly using protein engineering and showed that the
steric hindrance of ligand binding by the El1

Table 1

447

residue and the polarity of the E7 residue in the 3
subunit were critical for fine-tuning ligand affinity.
They also showed that E7-His and E7-GIn are
both capable of donating a hydrogen bond to the
oxygen molecules in a similar manner and the E7-
His to GIn substitution is therefore a structurally
and functionally conservative change. A Leu sub-
stitution at an E7-His position was also found in
a Glycera globin (Imamura et al., 1972). In this
study I found a Phe substitution at the E7-His
position in one of the four kinds of globins of
Haemadipsa (D-1 globin). Most recently, Suzuki
and Vinogradov have reported a Phe substitution
at position E7 in a fresh water leech globin
(Macrobdella TIA, GenBank accession no.
AB118638). Suzuki et al. (1989b) found that
hemoglobin of the deep sea clam, Calyptogena
soyoae, (E7-Gln, Suzuki et al., 1989a) was autox-
idized 1300 times faster than human hemoglobin
under the same conditions. Since the pioneering
work of Perutz (1970) who first studied geometries
of distal residues in the oxygen binding sites of
myoglobin and hemoglobin, E7 substitutions of
the conserved His residue remain an interesting

Percent identities and pair wise distances between Haemadipsa globins, Macrobdella globins, Lumbircus globins, Tylorrhynchus globins,

and the human « and B-globin

Globin H. zeylanica M. decora
M1 M2 D1 D2 IIA' 1IB? B? ct
M1 26.11 32.88 30.46 29.63 30.54 73.17 27.81
(2.089) (1.783) (1.985) (1.782) (1.967) (0.218) (1.884)
M2 30.57 30.77 29.94 28.31 26.04 52.98
(1.567) (1.687) (1.608) (1.852) (2.272) (0.627)
D1 31.33 75.00 30.54 30.49 30.18
(1.596) (0.266) (1.492) (1.690) (1.609)
D2 28.74 82.88 27.81 32.14
(1.636) (0.219) (1.879) (1.535)
Globin L. terrestris T. heterochaetus Homo sapiens
I (d)® 1(b)° 1(c)® 1V(a)® I nA” 1B’ 1c’ a® B8
M1 36.99 35.62 31.17 29.61 35.37 31.51 29.33 27.15 17.22 16.13
(1420) (1514 (1.975)  (1.850)  (1450)  (1.720)  (1.885)  (2.205)  (3.245)  (3.335)
M2 24.84 22.29 36.94 32.69 26.92 23.57 33.33 32.05 15.72 16.15
(2.003) (2.178) (1.233) (1.477) (1.723) (2.456) (1.331) (1.738) (2.980) (3.096)
D1 34.03 39.31 34.42 32.90 28.47 34.93 32.90 31.33 16.45 17.45
(1.520) (1.186) (1.426) (1.380) (1.690) (1.426) (1.467) (1.544) (3.513) (3.353)
D2 26.00 26.00 35.95 38.16 24.50 27.81 32.89 37.58 15.79 14.84
(1.910) (1.926) (1.472) (1.303) (1.905) (1.814) (1.335) (1.240) (3.651) (3.477)

Values in parentheses are genetic distances calculated by the program Protdist uder the Dayhoff PAM matrix option (Felsenstein,
1993). (1) DDBJ accession no.: AB118638, (2) DDBJ accession no.: AB 118639, (3) DDBJ accession no.: AB118640, (4) DDBJ
accession no.: AB118641, (5) Shishikura et al., 1987, (6) Fushitani et al., 1988, (7) Suzuki and Gotoh, 1986, (8) Braunitzer et al.,

1961.
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27
0.138 L Human & AULER
0.275 Human B
0.259
286 Tylorrhynchus TIA
0.292
Tylorrhynchus 1
0.272
Lumbricus 1I (b)
1000 0270 Lumbricus 1(d)
A
0.086 Macrobdella B
0.025
| 0.095 Haemadipsa M1
0.119
Macrobdella 11IA
0.126
Haemadipsa D1
Lumbricus 1V (a)
0.073 0.248
Tylorrhynchus 11C
0.252
Tylorrhynchus TIB
0.086
Macrobdella 11B B
0.102
Haemadipsa D2
0.011
680 Lumbricus 111 (c)
0.207
0.015 0.105 Macrobdella C
1000 0.222

Haemadipsa M2

Fig. 4. Phylogenetic tree based on primary structures of 16 globins of Annelida, constructed from 1000 bootstrap replications by the
neighbor-joining method (Saitou and Nei, 1987). The scale shown in the upper segment of the tree represents the evolutionary distances,
given as the average number of substitutions per site. The scores (with underlines) shown at each node represent bootstrap values.

objective. We are currently making crystals from
the leech hemoglobin as well as from C. soyoae
hemoglobin.

It is well known that homologous subunits
sharing an orthologous relationship in macromol-
ecules comprised of multiple subunits, namely,
hemoglobin and hemocyanin, are useful tools for
analyzing the genetic relationships of invertebrates
and vertebrates. I compared the primary structures
of two sets of four kinds of globins from Haema-
dipsa and Macrobdella (GenBank accession nos.
AB118638, AB118639, AB118640, AB118641).
Table 1 lists the percentage identities and genetic
distances between the complete amino acid
sequences of Haemadipsa, and the scores were
compared with those of Macrobdella, Lumbricus,

and Tylorrhynchus as well as human o and
globins. Low similarities (22-38%) were found
when leech globins were compared with Lumbricus
globins and Tylorrhynchus globins, as well as
human o globin (16—17%) and B globin (15—
18%). However, very high scores (53—83%) were
found between two globins of the leeches such as
the M-1 globin vs. Macrobdella B globin (73.2%),
M-2 globin vs. Macrobdella C globin (53.0%), D-
1 globin vs. Macrobdella IIA globin (75.0%), and
D-2 globin vs. Macrobdella TIB globin (82.9%),
suggesting each of these two globins to be in
orthologous relationships. Traditionally, H. zeylan-
ica belongs to Haemadipsidae and M. decora
belongs to Hirudinidae. The suborder of the two
species is Hirudiniformes. Siddall and Burreson
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(1998) have reported a molecular phylogeny of
leeches, including the Haemadipsidae and Hirudi-
nidae, based on the mitochondrial cytochrome c
oxidase subunit I, and confirmed a close relation-
ship to each other in the traditional phylogeny of
leeches (Mann, 1962). This is also supported by
this study.

Gotoh and his collaborators (Gotoh et al., 1987)
proposed two strains of globins, A and B, for the
classification of multiple globins of annelids. The
two-strain hypothesis has been revised: strain A
was subdivided into Al and A2 and strain B into
B1 and B2 (Gotoh et al.,, 1991; Suzuki et al.,
1993). Recently, Negrisolo et al. (2001) proposed
a new model for globin evolution of annelids,
vestimentiferans, and pogonophorans. They also
pointed out that the subdivision into four homol-
ogous groups of globins (Al, A2, Bl and B2)
could be an oversimplification of the real situation.
This proposal is supported by the molecular rela-
tionships of the four groups appeared on Fig. 4.

Fig. 4 shows the phylogenetic relationship of
annelid globins based on primary structures,
including a land leech (H. zylanica) and a fresh
water leech (M. decora), a terrestrial earthworm
(L. terrestris; a representative species of Oligo-
chaeta), and a marine polychaete (7. heterochae-
tus; a representative species of Polychaeta). In a
preceding paper (Shishikura et al., 1997), we
classified the four kinds of globins of H. zeylanica
into two strains, A and B, based on N-terminal
sequences, and this classification was confirmed
by this study. Fig. 4 and Table 1 clearly support

four subdivisions in the cases of leech globins.
The tree also partly supports Negrisolo’s recom-
mendation that to classify some Lumbricus globins
and Tylorrhynchus globins into four subdivisions
is an oversimplification. More information on the
primary structures is needed to establish the real
molecular relationships among leech globins in
Hirudinea because the two kinds of leeches report-
ed here seem to have diverged in very recent times
(Siddall and Burreson, 1998; Apakupakul et al.,
1999).

In conclusion, this study determined the primary
structures of the four kinds of globins from the
land leech, H. zeylanica, allowing the construction
of a molecular phylogenetic tree of globins among
representative species belonging to the three orders
of Annelida (Hirudinea, Oligochaeta and Poly-
chaeta). Judging from the molecular relationships
of annelid globins, the leech globins first separated
from the lineage of Annelida.
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Appendix 1-A. Primary structure and nucleotide sequence of M-1 globin of H. zeylanica

#ofa. a. residue 1 s 10 15 20 25 30
aminoacidseq. D P H Q € G L L E K F K F Y K QWTEVVFGLGE G QRTIETF
—— N-terminal
I K-5 i k-1 — K-3 —t K-8

nucleotide scq.  gac cee cat cag tge ggt ctg ctg gagaaa ttc aag ttc tac aaa caa tgg act gag gtg ttc ggt tig gga gag cag agg atc gaa ttt

Nested-per
# of a. a. residue 35 40 45 50 55 60
aminoacidseg G L K V F A K L FHDHZPDARIKILTFSNVNGENTIYSH
il K-2 —it K-4 it K-6
nucleotide seq. ggt ctt aaa gta ttt gec aaa et tte cac gac cat ect gat get aga aaa cte tte tee aat gte aat ggt gaa aac atc tac tee cac
Nested-per == == =======
# of a. a. residue 65 70 75 80 85 90
aminpacidsey E F K A H V KR VL S SLDILNAIULULSI RNDILILTEDIUG QL
E— ! K-9
nucleotide seq. gaa ttc aag gea cac gte aaa aga git ctt tee tet cte gat cte aac gea att ctg ttg agt aga aac gat ctt ttg gag gat caa ttg
- —3'RACE-=
# of a. a. residue 95 100 105 110 115 120
aminoacidseg. A H L K G Q HD S RGV DWS YV QAFIKOQAMLTETUVULTZPE
i} K-7 i
nucleotide seq. gea cac ttg aaa gga cag cac gat tcc aga ggt gtt gac tgg tca tac gtt cag gee tte aag caa gee atg tig gaa gtt ctt cca gaa
—————————————————————————————————— JRACE == === == —m—m e e ———
——————————————————————————————————————————————— Nested-per == ==——————-
# of a. a. residue 125 130 135 140 145
aminoacidseg. Y L G V F V C Y E S WD G CLEHTIULTG1FKGH
K-10 |

nucleotide seq. tat ttg gga gte tte gtg tge tat gaa teg tgg gac gga tgt cte gag cac ate cte act gge atc ttc aag gga cat taa

Appendix 1-B. Primary structure and nucleotide sequence of M-2 globin of H. zeylanica

#ofa. a. residue 1 5 10 15 20 25 30
aminoacidsegg D V H V E D H D E L CS GGDGNTIVVEDWNG QQLWEGS
F——  N-terminal
I K-8 |

t 1
nucleotide seq.  gat gtt cat gtt gaa gac cac gat gaa ttg tge age ggt gga gac gge aat atc gtc gtt gag gat tgg aac caa ttg tgg gag ggt age

# of a. a. residue 35 40 45 50 55 60
aminoacidseg. D § S F R I A F A K E V LLEVVNAHZPEAKETLTFHAVYV
I K-6 it
nucleotide seq. gac tca tca ttt aga ata gea tte gee aag gag gtg ctt ttg gaa gtg gta aac gea cac ccc gaa gea aag gaa ctt tte cat gea gtg
- Nested-per ' ==————=———=~
#of a. a. residue 85 90
amincacidscg. N I E D P N § G E F EAHSU LT RITINTT FDILTLVNILIULZG QD
K-9
nucleotide seq. -aac atc gag gat ccc aac tca gge gaa ttt gaa gea cat tec ttg aga atc atc aac acc ttt gat ctt ttg gtc aac ttg ctc caa gat
——————————————————————————————————————————————— Nested-per = === == == ——-
pree e 3'RACE===-
# of a. a. residue 95 100 105 i) 115 120
amincoacidseg. R H A L H E A S L HLGH QHAARZPGVV AKYTFIKTTFG
e LR = K3 —————
nucleotide seq. aga cat get cta cac gaa gee agt tta cat ctt gge cac caa cat get gee aga cce ggt gtt git gea aaa tac ttc aag aca tte gga
——————————————————————————————————————————————— Nested-per ' === ———————-
—————————————————————————— FRACE = e e e e e e
#of a. a. residue 125 130 135 140 145 150
aminoacidseg. Q E L I K A L A HL I DDVFHTFI AWIKG G CTFI KTLTIKEI
- K-5 it K-7 it K-2 it K-1 it
nucleotide seq. caa gag ctt atc aag gee ctt get cac ctt att gat gat tit cac ttc atc gee tgg aaa ggt tge ttc aag ace ttg acc aag gaa att
—————————————————————————————————————————————— Nested-per =

# of a. a. residue 155
aminoacidseq. V G S 1 P E

— Kl ——
nucleotide seq.  gtg ggt tec att cce gaa tag
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Appendix 1-C. Primary structure and nucleotide sequence of D-1 globin of H. zeylanica

#of a. a. residue 1 5 10 15 20 25 30
aminoacidseq. T H V. C P E L § A I KV QTQWREAY ADS S DRV AL A
F—— N-terminal i
k K-2 i K-6

nucleotide seq. act cac gte tgt cct gaa ctg tcg gee atc aaa gta cag act caa tgg agg gag get tat get gac age tee gat aga gta get ttg gee

=+ Nested-pcr

# of a. a. residue 35 40 45 50 55 60
aminoacidseg. Q A VY R T L F KM A P E S ANLTFHRVNSETETPDS AE
!
I K-4

nucleotide seq. caa get gte tac aga aca ctt ttc aag atg get cca gaa tce gee aac ctt tte cac agg gtc aac tcg gaa gaa ccc gac tea get gaa

——————————————————————————————————————————————— Nested-per === ——=======

# of a. a. residue 65 70 75 80 85 90
aminoacidseq F I A F S LR* V L NGL DV VI TLULDUG QEIZKALTFAGQTIE

nucleotide seq.  ttt att get tte tct ctg aga gtc ctc aac gga ttg gat gtt gtc atc acc ctt ttg gat caa gag aag get cte ttt gee cag att gag

----------------------------------------------- Nested-per === == =————-
Femmmm - JRACE — === —— e m e m i mm—— —
# of a. a. residue 95 100 105 110 115 120
aminoacidseq H L. H S Q H T E R H 1 PP KY A S A FVEALHHVLZPSYV
K-3 il
nucleotide seq. cac cte cac age cag cac atc gag aga cac att cct ccc aaa tat get tet gea ttc gtt gaa gea cte cac cac gtt ctg cca tea gte
——————————————————————————————————————————————— Nested-pcr === ——=——====-
————————————————————————— 3RACE-——————————— - —mmm e — -
#of a. a. residue 125 130 135 140
aminoacidseq I G H C Y D E H AW S QCULNS ST AKIKTIWLS
— K5 {— K-1 —
nucleotide seq. atc gge cac tge tac gac gag cac gee tgg tcg cag tge cta aac age att gee aag aaa atc ctc tea tag
e Nesled-pcr———-———-——-g
------------------------- 3RACE-=—————————=—==—==—=———7
Appendix 1-D. Primary structure and nucleotide sequence of D-2 globin of H. zeylanica
#of a. a. residue 1 5 10 15 20 25 30
aminoacidseq. D Y H C 8§ T E D I R D I QHDWQFTWGDASTLDARILIYV
—— N-terminal
nucleotide seq. gac tat cac tgt tec atc gaa gac atc aga gac atc cag cac gat tgg cag ttc acc tgg gga gat gee tet ctt gat gee agg ate git
Fe———————— Nested-per
<_ ____________________ SRACE == mmm— e e e — =
# of a. a. residue 35 40 45 50 55 60
aminoacidse¢g F G Q A V F K K L I EL D S SV VEZPLIKGVYHVYEDTPNS

k K-4 1} K-2

# of a. a. residue 65 70 75 80 85 9
aminoacidse¢g L T F K N HV L RV LNGLDNLTINLTFDEUGQGVLYSDQ
i Kb ————————cmmmmmm -

nucleotide seq. cte acc tte aag aac cac gte ttg agg gte cte aac gga ttg gat aac cte atc aat ttg ttc gac gag cag gga gtt cte gtg teg caa
Nested-per - —=—=—=——====-

# of a. a. residue 95 100 105 110 15 120
aminoacidseqg L N H L S Q Q H K E R AGVNAAHTFI KA ATFAR AF I DVL

------------------- i K-1 i}

nucleotide seq.  cte aat cat ctt tca cag cag cac aag gag aga gec gge gte aat get gea cac ttt aag get ttt gec aga get ttt att gat gtt ctt

# of a. a. residue 125 130 135 140 145 150
aminoacidseg E V S G N C P N L D AWKGC CLAALGHRTISUELEQLKK
- K-5 i K-3 i

nucleotide seq. gaa gte agt ggt aac tgt ccc aac cte gac get tgg aag ggt tgt ctg get gee ttg gge cac agg att tet ctt cag ctg aag aaa taa
— =+ Nested-pcr - ——

*, microheterogenity: D1: 67 (K), D2:114 (K)
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Appendix 2-A. Oligonucleotide primers used in the first PCR of globin cDNAs

HZM1 # of Amino acid residue 1 2 3 4 5 6 7
N-terminal Amino acid sequence D H Q C G L
Nucleotide sequence g ayccecneayececartgygegmny:t
HZM2 # of Amino acid residue 1 2 3 4 5 6 7
N-terminal Amino acid sequence D \'% H A% E D H
Nucleotide sequence g aygtnecaygtngaregayea
HZD1 # of Amino acid residue 1 2 3 4 5 6 7
N-terminal Amino acid sequence T H A\ C P E L
Nucleotide sequence a¢cnecacyt¢tntgyccngary:Ht
HZD2 # of Amino acid residue 1 2 3 4 5 7
N-terminal Amino acid sequence D Y H C S E
Nucleotide sequence gaytayoccacy gywsmnathga
Appendix 2-B. Oligonucleotide primers used in nested PCR of globin fragments
HZM1 # of Amino acid residue 16 17 18 19 20 21 22
Amino acid sequence  Q w T E v F G
Nested-per Nucleotide sequence ¢cartgegacngaregtnttyegeg
HZM2 # of Amino acid residue 21 22 23 24 25 26 27 28
Amino acid sequence  E D w N w E
Nested-per Nucleotide sequence gargaytggaayocary ttntggeg
HZD1 # of Amino acid residue 10 11 12 13 14 15 16 17
Amino acid sequence 1 K v w R
Nested-pcr Nucleotide sequence athaargtnecaracneartggmeg
HZD2 # of Amino acid residue 6 7 8 9 10 11 12
Amino acid sequence I E D I R I
Nested-per Nucleotide sequence at hgar gaya thmegmngaya:-t
Appendix 2-C. Oligonucleotide primers used in 3' RACE of globin fragments
HZM1 # of Amino acid residue 71 72 73 74 75 76 77
Amino acid sequence S S L D L N
3'RACE  Nucleotide sequence ¢c ¢ctctctcgatoctoecaacge
HZM2 # of Amino acid residue 78 79 80 81 82 83 84
Amino acid sequence N T F D L L A%
3'RACE  Nucleotide sequence ¢cacctttgatettttgegtec
HZD1 # of Amino acid residuc 70 71 72 73 74 75 76 77
Amino acid sequence N G L 1 T
3'RACE  Nucleotide sequence ¢c ggattggatgttgtocatcacoec
HZD2 # of Amino acid residue 64 65 66 67 68 69 70
’ Amino acid sequence K N H A% L R A%
3'RACE  Nucleotide sequence a a gaaccacgtettgagegegte
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Appendix 2-D. Oligonucleotide primers used in 5' cRACE of globin fragments

453

HZM1 # of Amino acid residue 95 94 93 92 91 90
Amino acid sequence G K L H A
P (reverse) Nucleotide sequence ¢c ¢ttt caagtgtgocoec
# of Amino acid residue 71 72 73 74 75 76 77
Amino acid sequence S S L D L N A
Ist PCR-F Nucleotide sequence c ¢ct ctctcgatoctcaacgegec
# of Amino acid residue 66 65 64 63 62 61 60 59
Amino acid sequence V. H A K F E S
1st PCR-R Nucleotide sequence ac¢cgtgtgccttgaadttocogtogegeg
# of Amino acid residue 45 44 43 42 41 40
Amino acid sequence A D P H D
2nd PCR-R Nucleotide sequence agecatecagegatgegtcecgteg
HZM2 # of Amino acid residue 98 97 96 95 94
Amino acid sequence S A E
P (reverse) Nucleotide sequence tggettcgtgtagacg
# of Amino acid residue 45 44 43 42 41 40 39
Amino acid sequence  E L L \ E K A
1st PCR-R Nucleotide sequence t t ¢ccaaaagcacctcedtteg
# of Amino acid residue 79 80 81 82 83 84 85
Amino acid sequence N T F D L L
st PCR-F Nucleotide sequence cacctttgatocttttggdte
HZD1 # of Amino acid residue 92 91 90 89 88
Amino acid sequence L H E I
P (reverse) Nucleotide sequence g aggtgetcaatecect g
# of Amino acid residue 70 71 72 73 74 75 76 77
Amino acid sequence N G L T
Ist PCR-F Nucleotide sequence c g gattggatgttgtcatocace
# of Amino acid residue 58 57 56 55 54 53 52 51
Amino acid sequence S D P E E S N \%
1st PCR-R Nucleotide sequence g agtcgggegttct tcecgagttegac
# of Amino acid residue 45 44 43 42 41 40 39
Amino acid sequence A S E P A M K
2nd PCR-R Nucleotide sequence g cggattctggagececoececadte
HZD2 # of Amino acid residue 87 86 85 84 83
Amino acid sequence L \'% G Q E
P (reverse) Nucleotide sequence a g aactoccectgedtec
# of Amino acid residue 64 65 66 67 68 69 70
Amino acid sequence K N H \% L R
Ist PCR-F Nucleotide sequence a a gaaccacgtecttgagegegdtec
# of Amino acid residue 56 55 54 53 52 51 50 49
Amino acid sequence  E A% G G P
1st PCR-R Nucleotide sequence t t ccacgtgaacectocccttcecageg

# of Amino acid residue 45 44 43 42 41 40 39

=
P
-

Amino acid sequence S

2nd PCR-R Nucleotide sequence g gagect gtca agectocgadte
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ABSTRACT: Hemoglobin D (Hb D) from the Aldabra giant tortoise, Geochelone gigantea, was crystallized
by the hanging drop vapor diffusion technique with a precipitant solution containing 10% polyethylene
glycol 3350 and 50 mM HEPES-Na, pH 7.5. The Hb D erystals of G. gigantea, which diffract to at least a 2.0
A resolution, belong to the menoclinic space group C2 with unit cell dimensions of g = 112.1 A b=1624 A,
¢=54.0 &, and B = 110.3°. One aff dimer molecule of Hb D existed in an asymmetric unit, with a calculated
value of ¥m of 2.77 A’Da™".

Keywords: hemoglobin D, crystallization, X-ray diffraction, Reptilia, the Aldabra giant tortoise,
Geochelone gigantea.

INTRODUCTION

Amniota (reptiles, birds, and mammals) have two or more hemoglobin components that. are
expressed according to the demands of different physiological conditions [1, 2]. In reptiles, two
hemoglobin components have been detected in the erythrocytes [3]: hemoglobin A (Hb A) is common to
vertebrates [4, 5], and hemoglobin D (Hb D) was first identified in birds as a minor cbmponent of the
embryonic and adult definitive erythrocytes [6, 7]. To our knowledge, the presence of Hb D has only been
confirmed in many but not all birds, in sphenodon, in after lizards and snakes, and in turtles.

The Aldabra giant tortoise, Geochelone gigantea, is one of the two extant giant tortoises [8, 9.

Our previous study on G. gigantea hemoglobin [10] revealed that the primary structures and genomic
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nucleotide sequences of the constituent globin molecules strongly resembled those of Hb D in birds [11].
These findings provided biochemical evidence of a close relationship between the two Phyla, Aves and
Reptilia.

In the course of this study, we encountered a similar phenomenon to that found in birds Hb by
Cobb et al. [12] and Morrow et ai. [13], who reported that the solubility of Hb D but not Hb A decreased
greatly and that Hb D formed crystalline aggregates upon deoxygenation. In fact, the solubility of
Geochelone Hb D decreased greatly and crystalline aggregates were formed if there was no coexistence of the
cognate Hb A. Riggs [14] also reported that the Hbs of most birds and of some reptiles and amphibians are
characterized by a further deoxygenation-dependent self-association of tetramers. These tetramer-tetramer
complexes have a greatly lowered oxygen affinity and, in turn, partial oxygenation results in dissociation
of tetramers of higher oxygen affinity. Thus, it would be of useful to analyze the tertiary structure of
Geochelone Hb D for better understanding the deoxygenation-dependent self-association of tetramers, the
cooperativity of the oxygen binding mechanism, and, in particular, the tetramer-tertramer contact first
suggested for chicken Hb by Huisman et al. [15], since reptiles and birds have two different components, Hb
A and Hb D, which share common B-globin chains.

We aim to establish the crystal structure of G gigantea Hb D and analyze the association of the
dimer-dimer and tetramer-tetramer molecules in comparison with the known crystal structures of the Hb D of
chicken [16] as well as the mammalian embryonic hemoglobin [17]. Here, we describe the crystallization
and preliminary X-ray diffraction analysis of the G. gigantea Hb D. This is the first crystallization report for
the reptilian Hb D.

EXPERIMENTAL RESULTS
Preparation of the hemoglobin D

Preparation of native Hb D has been reported previously [10, 18]. The purified Hb D for
crystallization was desalted and concentrated in 50 mM Tris-HCI (pH 7.5) with Ultrafree-4 centrifugal
ultrafiltration devices (Nihon Millipore Ltd., Tokyo, Japan).

Crystallization

Crystallization of G gigantea Hb D was carried out by the hanging drop vapor diffusion
technique, using VDX plates (Hampton, CA, USA) as follows: Hb D solution (2.0 pl of 3.5-4.0 mg/ml) in 50
mM Tris-HCI (pH 7.5) was placed on a siliconized cover glass and mixed with an equal amount of the
reservoir solution containing 10% (w/v) polyethylene glycol (PEG, mean molecular weight of 3350 Da,
Hampton, CA, USA) as a precipitant in 50 mM HEPES-Na, pH 7.5. The crystallization drops on the
siliconized cover glasses were sealed with vacuum grease and the vapor diffusion reaction was performed at
20°C against 0.75 ml of reservoir solution,

The purified Geochelone Hb D formed very small and very thin crystalline aggregates called
microcrystals during concentration as well as during incubation of the purified Hb D samples at 4°C. These

microcrystals were too small for analysis at our facilities and also inhibited the growth of large
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crystals by the hanging drop wvapor diffusion technique. However, we found that the removal of
microcrystals by filtration (pore size: 0.1 um in diameter) proved to be quite useful for the growth of large
crystals of the Geochelone Hb D. In these experiments, the crystals were first crushed and used as
microseeds. The micro-seeding trials gave small but nicely formed single crystals in a day. Finally, a cycle
of macro-seeding with these single crystals yielded crystals, which were large enough for proper analysis in
five days. Figure 1 shows a single crystal of Geochelore Hb D whose size was approximately 0.2 x 0.3 x 0.2
mm,

X-ray diffraction analysis

X-ray diffraction data were collected from flash-cooled crystals at 100 °K using a Rigaku R-AXIS
IV™ image plate detector with CuKa radiation from a Rigaku ultraX-18 rotating anode generator (Rigaku
Co., Tokyo, Japan). A crystal was immersed in anti-freezing solution containing 20% glycerol for 10-15 s,
was picked-up with a loop, and was then rapidly transferred to a cold stream. The conditions of data
collection were camera length = 150 mm, exposure time = 1 min, and X-ray source = 50 kV, 100 mA (fine
focused). The diffraction data were processed using the software CrystalClear (version 1.3, Rigaku Co.,
Tokyo, Japan). The crystal system was found to be monoclinic, with a space group of C2, and unit cell
dimensions of a =112.1 A, b =624 A, c=54.0 A, and B = 110.3°. The resulting data set was 99% complete
at a 53.65 - 2.02 A resolution with an overall Rmerge of 4.0% (Table 1). The value of Vin was 2.77 A’Da’,
suggesting that there is one ciff dimer in a symmetric unit. The tertiary structural determination using these
crystals is currently in progress by molecular replacement technique on the model of chicken Hb D [16].

Figure 1. A micrograph of the G. gigantea Hb D crystal (a bar : 0.2 mm).
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Table 1. Data collection and processing statistics. Note. Values in parentheses are for the highest resolution

shell (2.09-2.02 A).

Space group C2
Unit cell dimensions
a(A) 112.1
b(A) 62.4
c(A) 54.0
5 110.3
Resolution (A) 53.65 - 2.02
No. of recorded observations 63949
No. of unique reflections 22787
Rmergc (ZJIEJV}H = Eﬂljzhzjh) 0.040 (0135)
Completeness (%) 98.8 (100.0)
Multiplicity 2.78 (2.71)
[ /ol 11.8 (3.3)
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Abstract

To investigate the nitrite reducing activity of microperoxidases (mps) in the presence of methyl viologen and dithionite, the
fragments C14-K22 (mp9), V11-L32 (mp22), and G1-M65 (mp65) containing heme were prepared by enzymatic hydrolysis of
commercially equine heart cytochrome ¢ (Cyt ¢), in which His is axially coordinated to heme iron, and acts as its fifth ligand. The
nitrite reducing activity of mps was measured under anaerobic condition, and the nitrite reducing activity of mps increased with the
cutting of the peptide chain. The activity of the shortest nonapeptide mp9 was approximately 120-fold that of Cyt ¢ (104 amino acid
residues) and 3.2-fold that of nitrite reductase (EC 1.7.7.1) from Escherichia coli. In the nitrite reduction by mp, nitrite was com-
pletely reduced to ammonia. We presumed that ferrous mps reduced NO; to NO by donating one electron, the NO was completely
reduced to NH; under anaerobic condition via ferrous—-NO complexes as a reaction intermediate using visible spectra and ESR
spectra, and this overall reaction was a 6-electron and 8-proton reduction. Sepharose-immobilized mp9 had a nitrite reducing
activity similar to that of mp9 in solution, and the resin retained the activity after five uses and even 1-year storage. The mp will be
able to use as a substitute for nitrite reductase.
© 2004 Elsevier Inc. All rights reserved.
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In a natural nitrogen cycle, nitrite (NO5) is reduced
by two types of nitrite reductase. First, in dissimilatory
reduction, also called denitrification, NO; is used as a
respiratory terminal substrate, and two types of nitrite
reductase, copper protein [1], and Cyt ¢d, [2], are in-
volved. Second, NAD(P)H-nitrite reductase (EC
1.7.99.3), ferredoxin—nitrite reductase (EC 1.7.7.1), and
Cyt ¢ nitrite reductase (EC 1.7.2.2), also known as as-
similatory nitrite reductases, catalyze the reduction of

* Abbreviations: mp, microperoxidase; Cyt ¢, cytochrome ¢; NO,™,
nitrite; NO, nitric oxide; CD, circular dichroism; ESR, electron spin
resonance; Mb, myoglobin; Hb, hemoglobin.

* Corresponding author. Fax: +81-466-84-3950.

E-mail address: oku@brs.nihon-u.ac.jp (T. Oku).

0006-291X/$ - see front matter © 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.bbrc.2004.01.133

NO; to ammonia (NHJ) [3-5]. The NH; reduced by
these assimilatory nitrite reductases is mainly used in the
synthesis of amino acids.

A heme-containing peptide microperoxidase (mp) is
prepared by the proteolytic digestion of equine heart
Cyt c. The two cysteines (Cysl4 and Cys17) of mp are
covalently attached to the iron (III)-protoporphyrin IX,
and histidine (His) 18 is coordinated to heme iron. Thus
far, there are some reports about the amino acid com-
position and carbon monoxide (CO) reactivity of mps.
For example, Santucci et al. [6] reported that the heme-
containing undecapeptide (Valll-Glu2l), also called
mpll, is prepared by the pepsin-catalyzed hydrolysis
of equine heart Cyt ¢, and mpll reacts with free His
or His-composed o-helix to investigate the reaction
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of mpl1 heme iron and His. As a result, the His-com-
posed a-helix bound to the sixth position of the heme
iron of mpll, and the structural stability of the mpl1
complex and His-composed a-helix was higher than that
of mpl1 and free His. There are also some reports that
the heme of mpl1 reacts with CO, and the visible ab-
sorption maxima at 564 (a), 533 (B), and 413 (soret) nm
have been determined [7-9]. Ricoux et al. [10] reported
that the octapeptide mp8 (Cysl4-Glu2l) obtained by
peptic and tryptic digestion of equine heart Cyt ¢ reacts
with the nitrosoalkane (RNO) produced by nitroalkane
(RNO,) reduction, and the new absorption maxima at
415nm (soret peak) were obtained by the formation of
the complex between mp8 and RNO. Moreover, the
heme nonapeptide mp9 (Cys14-Lys22) prepared by the
trypsin-catalyzed hydrolysis of equine heart Cyt ¢ shows
a peroxidase-like activity, and its mp9 activity is ap-
proximately 1/50 that of horseradish peroxidase [11].
However, the NO; reducing activity of mp and the re-
lationship between the length of the peptide chain of mp
and the NO; reducing activity have not yet been re-
ported. Nitrite reductase does not come into the market,
because of low content of the enzyme in plants and
microbes, and of requirement of a lot of time for the
purification. We have tried to prepared a substitute for
nitrite reductase by cutting of the peptide chain of
commercial equine heart Cyt ¢ and determine NO; in an
aqueous solution.

In our laboratory, the structural/functional relation-
ships of c-type Cyt have been investigated, and the
crystal structure of Cyt ¢ from the red alga Porphyra
yezoensis has been determined at 1.57 A resolution (PDB
code: 1gdv) [12]. We reported that the conformational
stability of M58C mutant in which the sixth ligand
Met58 of P. yezoensis Cyt cs was replaced by cysteine to
be approximately 2.2-fold that of nonmutant Cyt ¢ [13].
Moreover, the NO; reducing activity of equine heart
Cyt ¢ that reacts at 100 °C for 30 min is ca. fivefold that
of native Cyt ¢, and we presumed that the NO; reducing
activity of Cyt ¢ increases with heat treatment, because
of the following intramolecular changes that occur in
Cyt ¢ with heat denaturation: (1) unfolding of the pep-
tide chain, (2) exposure of heme to the solvent, (3) dis-
sociation of the sixth ligand (Met80) from heme-iron,
and (4) autoxidation [14].

In this work, mp9 (C14-K22), mp22 (V11-L32), and
mp65 (G1-M65) were prepared from equine heart Cyt ¢
(104 residues) to investigate NO; reducing activity as a
novel activity, and the relationship between the activity
and the length of the peptide chain of mp. The physi-
cochemical properties of these mps were investigated
using UV/visible spectra, CD spectra, and redox titra-
tion. Moreover, mp9 which showed the highest NO;
reducing activity was immobilized in CNBr—Sepharose
and acrylamide, and its NO; reducing activity was
measured.

Materials and methods

Preparation of microperoxidase 9, 22, and 65. Mp9 and 22 were
prepared according to Plattner et al. [11] and Cheek et al. [15]. For
the preparation of mp9 and mp22, equine heart Cyt ¢ (Wako Pure
Chemical Industries) was digested by incubation of Cyt ¢ in 0.1 M
Tris—-HCI buffer (pH 8.0) containing 0.5M urea, with trypsin for
mp9 or chymotrypsin for mp22 (protein substrate:protease ratio 1:50
by mass) at 37°C for 24h. Mp65 was prepared by treatment of
intact equine heart Cyt ¢ with cyanogen bromide at 20°C for 4h
[16]. The reaction mixture was loaded on a Toyopear]l HW-40F gel
filtration column (Tosoh; 1.0 x 85cm). The purity of mp9 and 22 was
checked using a BioCAD 700E perfusion chromatograph equi-
pped with a Poros R2/20 column (Applied Biosystems: 4.6 x
100mm), and the purity check of mp65 was performed by tricine
SDS-PAGE.

Measurement of nitrite reducing activity. The NO; reducing activity
of mps was determined according to Vega [17]. The vial containing
0.675ml of 100mM sodium phosphate buffer (pH 7.0), 0.4ml of
10 mM sodium nitrite, 0.5 ml of 3 mM methyl viologen, and 0.125 ml of
20 uM mp solution was sealed with a butyl rubber cap. After pre-in-
cubating the mixture at 37 °C for Smin, the reaction was initiated by
adding 0.3 ml of 100 mM sodium dithionite dissolved in 50 mM sodium
bicarbonate. The reaction was conducted under anaerobic condition at
37°C. The reaction mixture was placed in a test tube, left to stand for
several minutes, and then vigorously shaken until complete decolor-
ization.

NOj; detection was performed according to Ramirez et al. [18]. For
NO; detection, 1.95ml water, 1 ml of 1% sulfanilamide, 1ml of 0.02%
N-1-naphthylethylenediamine, and 1 ml pure water were added to 50 pl
of the reaction mixture. After allowing the reaction mixture to stand at
room temperature for 20 min, its optical density at 540 nm was deter-
mined. One unit of activity was defined as the amount of enzyme
needed to reduce 1pmol of NO; per minute. The k., value was cal-
culated from Lineweaver—Burk plots.

NH; detection was based on the methods described by Scheiner et
al. [19]. For the NH; detection 1.9 ml water, 1 ml of 50 mg% sodium
nitroprusside in 10% phenol, 1ml of 0.06% sodium hypochlorite
solution dissolved in 0.1 M disodium hydrogen phosphate, 0.25M
sodium hydroxide, and 1 ml pure water were added to 100 pl of the
reaction mixture. After allowing the reaction mixture to stand at room
temperature for 60 min, its optical density at 630 nm was determined.

The inhibition of NO; reducing activity of mps was determined
according to Vega [17].

Spectroscopic analysis. The visible spectra of mps were monitored
with a Hitachi U3310 spectrophotometer using quartz cuvettes of 1.0-
cm path length at 25°C. Mp concentration was determined using a
pyridine hemochromogen method [20]. Circular dichroism (CD)
spectra were recorded at 25 °C in 20 mM sodium phosphate buffer (pH
7.0), with a JASCO J-700 spectropolarimeter using 0.2-cm path length
rectangular quartz cuvettes [21]. Electron spin resonance (ESR) spec-
trum of mp9 was recorded at cryogenic temperatures with a JOEL
ESR spectrometer, JES-FA200.

Redox titration study. The redox titrations of mps were performed
under anaerobic condition, with a continuous stream of argon, in
100 mM sodium phosphate buffer, pH 7.0, at 25 °C [22]. The potentials
were measured with a Horiba F-13 pH meter equipped with an ORP
electrode, and the optical spectra were monitored throughout the ti-
tration on a Hitachi U3310 spectrophotometer. The redox mediators
were used to stabilize the solution redox potential as described by
Yamada et al. [14]. The redox data were analyzed with a theoretical
curve based on the Nernst equation (n=1): E=E’+ (RT/nF)
In([ferric]/[ferrous]) [23].

Preparation of Sepharose-immobilized and acrylamide-immobilized
microperoxidase. Sepharose-immobilized mp9 and acrylamide-immo-
bilized mp9 were prepared according to the Shin and Oshino [24]. The
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binding rate of mp9 to CNBr-Sepharose 4B and the rate of inclusion
of mp9 in acrylamide were 99.98% and 99.78%, respectively.

Results and discussion
Physicochemical properties of microperoxidase

The UV/visible spectra of mp65 (G1-M65), mp22
(V11-L32), and mp9 (C14-K22) are shown in Fig. 1. For
mp63, its ferric forms showed visible absorption maxima
at 535 (o + B) and 404 (soret peak) nm, and its ferrous
forms at 549 (o), 520 (B), and 415 (soret peak) nm
(Fig. 1B). These absorption peaks of mp65 indicate that
mp65 has a 6-coordination low spin [25]. The absorption
peak at 695 nm that was observed in Met80 sulfur charge
transfer to heme iron disappeared in the ferric forms of
mp65. There are three His residues (His18, His26, and
His32) in equine heart Cyt c. His18 is axially coordinated
to heme iron and acts as its fifth ligand [26]. Santucci
et al. [27] reported that the fragment G1-G56 was ob-
tained by the thermolysin-catalyzed hydrolysis of equine
heart Cyt ¢, and this fragment has two His residues
(His18 (fifth ligand) and His26 or His33 (sixth ligand))
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axially bound to the heme iron. From this study, it was
considered that two His residues (His18 and His26 or
His33) are coordinated to heme iron in mp65. For mp22,
its ferric forms showed visible absorption maxima at
398 nm (soret peak), and its ferrous forms at 549 (a), 520
(B), and 416 (soret peak) nm (Fig. 1C). This indicates
that mp22 has a 6-coordination low spin with His18 and
His26 as axial ligands. For mp?9, its ferric forms showed
visible absorption maxima at 619 (high spin marker
band) and 395 (soret peak) nm, and its ferrous forms at
549 (o) and 412 (soret peak) nm; moreover, the absorp-
tion peak at 520 (B) disappeared in the ferrous forms of
mp9 (Fig. 1D). The absorption peak at 619 nm of the
ferric forms of mp9 was consistent with those of deoxy-
Mb [28] and mp11 [29], which have a 5-coordination high
spin with His as an axial ligand. The absorption peak at
520 (B) nm disappeared in the ferrous forms of the M8OA
Cyt ¢ mutant [25], similar to the case of mp9. From these,
it was assumed that mp9 has a 5-coordination high spin
with His18 as the fifth ligand.

The physicochemical properties of mp65, mp22, and
mp9 are summarized in Table 1. The isoelectric points
(pD) of mp65, mp22, and mp9 were 9.52 (theoretical
value: 10.06), 6.02 (9.72), and 4.28 (6.99), respectively,
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Fig. 1. UV/visible spectra of the ferric (solid line) and ferrous (broken line) forms of Cyt ¢ and mps. Absorption spectra of 10 uM Cyt ¢ and mps were
measured in 10 mM sodium phosphate buffer (pH 7.0) at 25°C. (A) Cyt ¢; (B) mp65; (C) mp22; and (D) mp?9.



818 K. Suruga et al. | Biochemical and Biophysical Research Communications 315 (2004) 815-822

Table 1
Physicochemical properties of mps prepared from equine heart Cyt ¢

mp9 mp22 mp65 Cyt ¢

p! 4.28 6.02 9.52 10.50
Absorption maxima (nm)
Ferric (Fe''') 395 398 404 409
619 535 535
Ferrous (Fe'') 412 416 415 415
520 520 520
549 549 549 550
E° (mV, pH 7.0, 25°C)  -132 -67 -62 260
MW 1630 3065 8900 12,500

]

Mean residue ellipticity
(x 1073 deg-cmz-dmol'l)
th

—
=)

-15
2000 210 220 230 240 250 260
Wavelength (nm)

Fig. 2. Circular dichroism spectra of Cyt ¢ and mps. The spectra of Cyt
¢ and mps in 10 mM sodium phosphate buffer (pH 7.0) at 25°C were
recorded. Lane 1: Cyt ¢; 2: mp65; 3: mp22; and 4: mp9.

and the pl of mp9 was the same as that of mpl1 [11].
The redox potentials of mp65, mp22, and mp9 were —62,
—67, and —132mV, and were 322, 327, and 392mV
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lower than that of Cyt ¢ (260mV), respectively. The
redox potential of mp9 was similar to that of mpll
(-134mV) [30].

The secondary structures of mp65, mp22, and mp9
were examined, and the far-UV CD spectra of these mps
were measured (Fig. 2). It was found that mp9 (C14-
K22) has only random coil conformations, because it
has no a-helix segment of equine heart Cyt ¢ (Figs. 2-4).
Mp22 (V11-L32) has the helix IT (K22-K27) segment of
equine heart Cyt ¢, but its CD spectra agreed closely
with that of mp9, which has no a-helix (Figs. 2-3). From
these results, it was assumed that mp22 has a random
coil conformation. The CD spectra of mp9 and 22 were
almost the same as that of mpl1, which has a random
coil conformation [31]. Mp65 (G1-M65) has helix I (G1-
A15), helix II (K22-K27) and helix III (D50-G56) seg-
ments, and part of the helix IV (E61-E69) segment.
From the CD spectra, the absorbance at 222nm of
mp65 was ca. 1/2 that of equine heart Cyt ¢ (Fig. 2, lane
1), but the absorbance at 200 nm which corresponds to
the random coil configuration increased (Fig. 2, lane 2).
This result was similar to that of the fragment G1-G56
that was prepared by the thermolysin-catalyzed hydro-
lysis of equine heart Cyt ¢ [27], and it was considered
that the a-helices of mp65 are unfolded. From the re-
sults of redox potential and CD spectra, we assumed
that the heme of mps would be exposed to solvent with
cutting of the peptide chain.

Nitrite reducing activity of microperoxidase and its
reaction mechanism

The NO; reducing activity of mp65, mp22, and mp9
was measured in the presence of methyl viologen and
dithionite under anaerobic condition, and the NO; re-
ducing activity of the mps increased with the cutting of
the peptide chain (Fig. 3). The reason for this is given in
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Fig. 3. Nitrite reduction and ammonia production of Cyt ¢ and mps. The nitrite reducing activities of 1.25 uM Cyt ¢ and mps were measured at 37 °C
under anaerobic condition in the presence of dithionite and methyl viologen. (OJ) ferrous sulfate; () hemin; (A) Cyt ¢; (A) mp65; (O) mp22; and (@)

mp9. (A) nitrite reduction; (B) ammonia production.
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the middle of this section. Both the NO; reducing ac-
tivities of ferrous sulfate which composes mp, and hemin
which has no peptide chains were approximately 1/150
that of mp9 (Fig. 3). Generally known, the hemin was
insoluble in all solvents except aqueous strong base. The
ket (s71) values of equine heart myoglobin (Mb) and the
fragment (V17-K46, 26 residues) prepared by the lysyl-
endopeptidase-catalyzed hydrolysis of equine heart Mb
were 0.004 and 0.018, respectively. These values were
similar to that of Cyt ¢ (ke (s7')=0.015), but were
approximately 1/460 and 1/100 that of mp9. In ¢ type
Cyt, the protoheme is covalently bonded via thioether to
the two cysteines (Cysl4 and 17) of the peptide chain
[32], but b-type hemoproteins such as Mb and hemo-
globin (Hb) have no thioether linkage [33]. From these,

Table 2
Kinetic study on nitrite reducing activity of Cyt ¢ and mps

K, (mM) kear (571) keat/Kin (mM/s™")

Cyt ¢ 2.453 0.015 0.006
mp65 2.140 0.120 0.056
mp22 1.830 0.800 0.440
mp9 1.420 1.834 1.292
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it was proved that the covalent bond between heme and
Cys may be necessary for enhancing of the NO; re-
ducing activity of mp. A kinetic study of mp for deter-
mining its NO; reducing activity was conducted, and
the results are shown in Table 2. The k., (s7!) values of
mp65, 22, and 9 were 0.120, 0.800, and 1.834, respec-
tively. The NO; reducing activity of the shortest nona-
peptide mp9 was approximately 1/27 and 1/6 that of
the spinach nitrite reductase (ke,; (s7!)=49.650) [34]
and P. yezoensis nitrite reductase (kg (s~')=10.000)
[35], respectively, but this activity was ca. 3.2-fold that
of the nitrite reductase from Escherichia coli (ke (571) =
0.570) [36] and 120-fold that of Cyt ¢ (104 amino acid
residues).

From these results, it was assumed that the lower
molecular in prepared mps, which were water-soluble
heme peptide, showed the higher NO; reducing activity,
because the collision probability of mps to NO; would
be increased with the cutting of the peptide chain. As
shown in Figs. 1B and C (see preceding section), mp65
and mp22 have a 6-coordination. On the other hand,
mp9 has a 5-coordination and the sixth position of mp9
was vacant (Fig. 1D). Consequently, the shortest

B 20 .§ét§*A\\A N
- o LN &
= %
o
=2
= =
= 8
= 8
— O
R
<]
La
- ]
g
= o
=
2 B
0 30 60 90 120
D
o o
=
=3
=
= g
= 8
= g
BogRst
=3
5]
v a
e g
.E o
=3 |
0.0 ‘;;;A'-‘ =N \A
0 30 60 90 120

Reaction time {min)

Fig. 4. (A) Nitrite reduction and ammonia production of Cyt ¢ and mps. (B) Effect of methyl viologen on nitrite reducing activity of Cyt ¢ and mps.
(C) Effect of dithionite on nitrite reducing activity of Cyt ¢ and mps. (D) Effect of methyl viologen on nitrite reducing activity of Cyt ¢ and mps.
Methyl viologen was added to reaction vial at 30 min. (A) Cyt ¢; (A) mp65; (O) mp22; and (@) mp9. Solid line: nitrite reduction; Dashed line:

ammonia production.
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Fig. 5. (A) Visible spectra of ferrous mp9 reacted with nitrite. Ferrous mp9 (dashed line) was prepared by the addition of portion of dithionite under
anaerobic conditions at pH 7.0. Then a portion of 1 M sodium nitrite was added (solid line). (B) Electron spin resonance spectrum of mp9 during the

nitrite reducing activity. The spectrum was monitored under liquid nitrogen.

nonapeptide mp9 had the highest NOJ reducing activity
in prepared mps.

In the NO; reduction by mp, NO; was reduced to
NH; in the presence of methyl viologen and dithionite
under anaerobic condition, and the conversion rate was
approximately 100% (Fig. 4A). This reaction was the
same as that of the assimilatory nitrite reductases from
spinach [34], P. yezoensis [35], and E. coli [36]. When the
methyl viologen as electron carrier was absent in the
reaction mixture, the NO; reducing activity of mp was
approximately 1/45 that of mp in the presence of methyl
viologen (Fig. 4B). When the sodium dithionite as re-
ductant was absent in the reaction mixture, the mp did
not show the NO; reducing activity at all (Fig. 4C).
After the addition of methyl viologen to the reaction
mixture at 30 min, the NO; reduction and NH; pro-
duction were rapidly proceeded (Fig. 4D).

The visible spectra of reaction products of mp9 with
NO; were measured at pH 7.0 (Fig. 5A). The ferric mp9
did not react with NO; at pH 7.0 (data not shown), but
the spectral changes of the ferrous mp9 reacted with
NO; were observed. The soret peak shifted to 410 nm
(ferrous mp9-NO; complex) from 412 nm (ferrous mp9)
and the a-peak (549 nm) disappeared, and these spectral
changes were also recognized in the case of mpll re-
acted with CO [7]. These spectral changes were probably
due to the formation of NO;—Fe-His coordination. The
ESR spectrum of mp9 during the NO; reducing activity
was measured under cryogenic temperature (Fig. 5B).
The ESR spectrum showed a hyperfine structure near
and at g = 2, and this indicated the ferrous-NO com-
plex [37]. From this, it was assumed that the ferrous-NO
complexes were a reaction intermediate in the NO;
reducing activity of mps.

From these results, we presumed that ferrous mps
reduced NO; to NO by giving one electron, and the NO
was completely reduced to NHJ} under anaerobic
condition via ferrous-NO complexes as a reaction
intermediate. This overall reaction was a 6-electron and
8-proton reduction as well as that of the nitrite reductase
[34-36].

The pH dependence of the NO3 reducing activity of
mp9 was studied. The optimum pH for NO; reducing
activity of mp9 was 7.0 with sodium phosphate buffer
(Fig. 6). This value was close to those of the nitrite
reductase from spinach (pH 7.5), and P. yezoensis (pH
7.5), [35].

The effect of various inhibitors on the NO; reducing
activity of mp9 was investigated (Table 3). Potassium
cyanide (KCN) was found to be effective inhibitor, and
at a KCN concentration of 2mM, the mp9 was more
than 99% inhibition. When the CO was added to the
reaction mixture, CO inhibited the NOJ reducing ac-
tivity of mp9 completely. These results were similar de-
gree to those of nitrite reductase from spinach [37,38]. A
metal chelating reagent, o-phenanthroline, and EDTA
showed no inhibition of NO; reducing activity of mp9.
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Fig. 6. The pH profile of the nitrite reduction of mp9. Each pH was
maintained with sodium citrate (pH 4-5), sodium phosphate (pH 6-7),
Tris—chloride (pH 8), and glycine-NaOH (pH 9).
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Table 3
Effect of some inhibitors on nitrite reducing activity of mp9

Inhibitors Concentration (mM) Inhibition (%)
Potassium cyanide 0.02 91.18
0.2 92.40
2.0 99.13
Carbon monoxide Saturated 100.0
o-Phenanthroline 0.02 0.00
0.2 0.00
2.0 0.00
EDTA 0.02 0.00
0.2 0.00
2.0 1.69
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Fig. 7. Nitrite reducing activity of immobilized mp9. (O) free mp9; (A)
Sepharose-immobilized; and () acrylamide-immobilized.

These results were close to those of nitrite reductase
from spinach and green alga Chlorella fusca [37,39].

Immobilized microperoxidase and its nitrite reducing
activity, stability, and reuse

As a rule, proteins and enzymes are unstable at high
temperatures and their recovery after a reaction is dif-
ficult. We attempted to improve the reusability and
stability of mp9, which showed the highest NO; re-
ducing activity, and prepared the mp9 immobilized in
CNBr-Sepharose or acrylamide. The NO; reducing
activity of CNBr—Sepharose or acrylamide-immobilized
mp9 was then measured. The NO; reducing activity of
CNBr-Sepharose-immobilized mp9 was fourfold that of
acrylamide-immobilized mp9, and CNBr-Sepharose-
immobilized mp9 had nearly the same activity as soluble

mp9 (Fig. 7). Heme in CNBr-Sepharose-immobilized
mp9 was exposed to a solvent, but, in the case of the
acrylamide-immobilized mp9, mp9 is surrounded by a
matrix. It is considered that the matrix prevents its
contact with NO; or an electron donor [14]. Thus, it was
presumed that the NO; reducing activity of CNBr—
Sepharose-immobilized mp9 is higher than that of ac-
rylamide-immobilized mp9. The residual activities of
CNBr-Sepharose and acrylamide-immobilized mp9
were 99.0% and 99.1%, respectively, even after storage
at 4°C for 1 year. The activity of CNBr-Sepharose-
immobilized mp9 after the fifth use was 99.4%, and thus
mp9 is reusable. Moreover, the immobilized mp9 also
showed the NO reducing activity in addition to NO;
reducing activity, and the activity was nearly the same as
that of soluble mp9 (data not shown).

Conclusion

In this work, we reported for the first time that the
mps prepared by enzymatic hydrolysis of commercial
equine heart Cyt ¢ showed the NO; reducing activity as
a novel activity. The NO; reducing activity of mps in-
creased with the cutting of the peptide chain, and mp9
after use had the same NO; reducing activity as that of
freshly mp9 by immobilization. This mp may thus be a
new molecule for simple applications such as the deter-
mination of NO; in an aqueous solution and will be
able to use as a substitute for nitrite reductase.
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